MTA Launch Event, 2021-10-16

by Bill Claybaugh and Dave Nordling, RRS


This firing report will be the first in a series of three articles posted on RRS.ORG. This report will cover the launch event and preparations over many days made by RRS member, Bill Claybaugh. As the attending pyrotechnic operator for this firing event, I have summarized this work for the benefit of our readers with the permission and oversight of Bill.

Bill Claybaugh has been planning to build, load and launch a large 6-inch solid motor for many months and the first attempt had finally come to pass at the RRS Mojave Test Area (MTA) over the span of almost a week starting Tuesday, October 12 and culminating in a launch on Saturday, October 16, 2021. He had studied this project very carefully and built a great many new parts and tools from his home in Colorado. The scope of this project is quite extensive and the larger goal was to enable larger solid motor building by other members of the RRS at the MTA. The 6-inch motor was just the first in what will hopefully be a growing series of similar and larger scale solid motors.

Bill Claybaugh’s description of his six-inch rocket from his Flight Readiness Review presentation.

The predicted performance of this 6-inch single grain motor was 1350 lbf of thrust for a duration of 8.35 seconds which was expected to exceed 70,000 feet; well above the RRS MTA’s standard 50,000 foot altitude waiver. This “P” sized solid motor in this vehicle required an FAA Certificate of Authorization (COA) for this flight on the prescribed dates during daylight hours. The submission of Monte Carlo simulations of the trajectory (splash analysis) were graciously performed by Chuck Rogers (author of the RASAero II software) and a necessary part of the process to verify no significant concerns for impacting nearby populated areas or structures. Also, the FAA Class 3 rocket waiver that was granted would require the launch team to contact the relevant air traffic control 15 minutes in advance of the intended launch for final permission to proceed. A separate article discussing this subject in more detail will be coming soon.

The rocket had two streamers for a recovery system which were intended to be sufficient for easier spotting of the rocket in descent rather than provide a soft landing.

Many members of the society participated in this project over the several days needed to prepare and conduct the mixing, pouring and casting process. RRS members Dave Crisalli and George Garboden lended their time and expertise in solid motor building which led to a stellar finished product on Thursday. Several of Bill’s family and friends attended and supported the preparations for launch.

Bill Claybaugh’s four-finned rocket with an end view of the four-fin 6-inch single-grain motor loaded and ready for the nozzle installation. RRS president, Osvaldo Tarditti, talks with Bill on the morning before launch.
The forward and aft views of the nozzle assembly of the Claybaugh six-inch rocket.
Bill Claybaugh holds his payload system without the fiberglass long-ogive nosecone cover.
Pictures of the different parts of the pneumatic separation system and payload.
Ed Wranoski finishes the mating of the payload on top of the single stage solid motor checking the alignment before preparing to move the rocket to the launch pad.

Given the size of the 6-inch rocket, Bill designed and built a T-slot type of launch rail with a 24-foot length on an aluminum truss structure. The system was designed to be deployed in a green-field site and easily assembled by a small team of people. There were some challenges in getting the design to work but through the combined efforts of those at the site during the afternoon and early evening on Friday, the erecting and loading process was safely completed. Susan and Ed Wranoski both had a lot of great suggestions about getting the right placement of the come-alongs to bring the launcher up to a sufficient angle to secure it by the chains and strap anchors around the pad.

The new launch rail system will be the subject of a separate article coming later on RRS.ORG. Design improvements and substantial changes are being planned such that the next launch event will have an easier time in raising and lowering this important asset for the launching of larger rockets from the MTA.

Testing of the erecting process took place into the early evening by headlights. These operations provided valuable information making launch preparations the following morning far simpler.
Bill Claybaugh, Mike Pohlmiller and Ed Wranoski secured the 6-inch rocket by two bellybands in flyaway railguide system.

During the first launch operations of the rocket, the wireless telemetry wasn’t receiving signals. After restarting the computer and replacing the nosecone, the pyrotechnic charges in the recovery system accidentally fired due to a short. The payload system was removed, inspected and replacement pyrotechnic charges installed. After protecting the terminals from a similar short during final installation of the payload and nosecone, the telemetry system was working and the launch could proceed.

The nosecone being replaced after a quick test of the payload system.
Bill’s 6-inch rocket on the rails and secured for launch.

The launch event coincided with the launch operations of our neighbors’ (FAR). We were in constant communication to assure everyone was under cover at the proper times. The weiather was nearly ideal with very low winds the whole day. After road and air checks were completed, we prepared for launch.

Bill Claybaugh prepares for firing with RRS president, Osvaldo Tarditti, amd others ready to film and photograph the launch.
Still captured from the launch footage showing the rocket clearing the tower.
Last still picture of Bill’s 6-inch rocket before going out of view of the camera.

The initial launch was swift and powerful as the motor ignited and came to full thrust leaving the launch rail. The rocket canted to the northeast opposite the intended direction of the launch rail and the vehicle appeared to corkscrew as the motor burned to its full duration before going out of sight. The recovery system appears to have fired early as one of the streamers and the entire payload module fell back to the northern side of the MTA. The spent rocket motor casing has not yet been recovered. Bill was able to bring back the payload segment for inspection at the MTA while others continued the search for the rocket.

Bill disassembles the recovered payload system after its short descent back to the ground.
Both pyrotechnic separation charges had fired.
The antenna snapped off and was not found.
Recovered flyaway railguides showed signs of recontact from the tail fins from the sharp tears and rips seen. This is a common occurrence with flyaway railguides and they can be refurbished for the next flight.

Based on review of video footage, it appears the sudden turn uprange occurred at around 100 feet and took less than 1/4 second.  The current thinking is that the separation system depressurized, producing the side-thrust that caused the sharp turn after leaving the rail. It is assumed the telemetry loss of signal (LOS) was a result of the antenna snapping off during this sudden turn. LOS occurred at 119 feet and 425 ft/sec. About 0.25 seconds later, the payload can be seen starting to fall away from the rocket which can only occur if the system is depressurized. The payload was recovered about 300 feet from the launch tower and on the ‘new’ azimuth.

After the initiators fire–and both were fired–it would be expected that applying pressure to the quick-disconnect (QD) fitting would:

(1.) NOT result in the four retention pins extending, and,

(2.) would cause venting through the diffusers. 

That is, the burst disk is supposed to be punctured due to the piston driving the hammer through it when the initiators fired and any gas generated in the system is vented past the burst disk and through the diffusers.

The recovered flight hardware instead extended all four pins, did not vent through the diffuser, and did vent through the outlet reserved for the hot initiator gases.  This means that the burst disk was not opened and pressurizing gas was somehow leaking into the hot gas circuit.  The image below of the burst disk shows its condition as found upon opening.

Burst disk valve distorted but not penetrated as designed.


Further disassembly showed that the O-ring seal separating the hot and cold gas circuits around the hammer that penetrates the burst disk appeared damaged from heat. That seal damage was allowing the cold gas to escape into the hot gas circuit and then vent. Further, the O-ring prevented hot gas from getting to the subject O-ring around the piston that drives the hammer through the burst disk was in two pieces and showed clear evidence for melting at the edges. Thus, when the dual-redundant initiators fired, the piston O-ring failed (or had previously failed, although it was undamaged when installed) which allowed hot gas to leak past the piston (which nonetheless hit the burst disk hard enough to dent it but not tear it) and to damage the O-ring separating the hot-gas and cold-gas circuits in the valve. These two damaged O-rings then allowed cold gas to vent via the hot gas circuit, resulting in the payload seperating from the rocket.

Naturally, none of these failures ever occured in previous ground testing.

Wind shear was considered as a cause for the sudden change in vehicle direction witnessed during launch right after clearing the rail. Even in calm wind conditions on the ground, there have been past launch events at the MTA which have had sharp unseen discontinuities in the wind profile causing serious perturbation of the flight path in a rocket flight. This potential cause can not be fully excluded, but it is thought to be unlikely..

The venting of the hot and cold gas _may_ have caused the sudden pitch over as seen in video footage. As of now, this is being carried as a working hypothesis.  However, none of this explains why the initiators apparently fired a few fractions of a second after lift-off.

The telemetry data will soon be downloaded from the ground station to see if there was any indication of the beginning of this sequence of events. Because the ground station showed loss of signal (LOS) at 119 feet, and that LOS appears to have been the result of the antenna snapping off in the course of the sudden pitch change. There might not be any recorded data of the relevant accelerations or rates from the ground station.

This report will be updated as new information becomes available.

Examining the launch rail and supporting cables before the planned lowering.
Former RRS member, Kevin Sagis helps in gradually releasing the come-along chain bringing the heavy launch rail back to horizontal as the rest of the team managed the straps.

In conclusion of that day’s launch event, with the recovered parts from the rocket payload examined and packed for shipment back to Bill’s home, the remaining team worked to carefully lower the launch rail back to horizontal using the reversed process used to successfully and safely raise it. The launch rail support legs were left at the MTA as Bill and Mike Pohlmiller were going to consider a new design approach using the same T-slot backbone. Although there was no evidence of the rocket hanging up on any discontinuity, some repairs of the interconnections between the three segments should allow the combined rail path to be more straight.

The RRS is grateful to the many members and participants we had over those several few days. It was a big success despite some significant challenges and disappointment in the results. The project was designed to be a pathfinder to subsequent large solid motor projects and we expect the next motor build and improved payload system design in the new calendar year, 2022.


MTA Launch Event, 2021-09-26


by Keith Yoerg, Reaction Research Society Secretary


The RRS Mojave Test Area (MTA) hosted a launch event and work party on Sunday, September 26th. The USC Rocket Propulsion Lab (USCRPL) had arrived a few days earlier to prepare for a static firing of their 8″ diameter solid rocket motor named “Earthshaker II” which took place on the 26th. Several RRS members also answered the “Yoerg Challenge” to launch model rockets, and Dimitri was out with his water rockets. On the work side of things the Dosa building was re-organized, a security camera was installed, and a discussion began on how best to replace the aging roof on the blockhouse.

USCRPL 8″ SOLID ROCKET STATIC TEST

USCRPL had their setup ready for a static test of their 8″ solid rocket motor in the late afternoon, which was secured below the vertical test stand. Unfortunately, shortly after coming up to full power the motor exploded. All personnel were at a safe distance in the bunker and no one was injured. RRS President and Pyrotechnic Operator in charge Osvaldo approached the site once it was safe and extinguished the resulting flames.

Still shot from a video of the USCRPL motor explosion
Pyrotechnic Operator Osvaldo bringing a fire extinguisher to the lingering fires

All requests to use the RRS MTA must be made to the RRS president and reviewed by the executive council.  For any questions about this test series or any future test series, please contact the RRS president.

president@rrs.org

YOERG CHALLENGE MODEL ROCKET LAUNCHES

Many RRS members had model rockets on hand to answer the “Yoerg Challenge” and launch at the MTA site. Dimitri and his son Max launched a “Helios” and “Dazzler” on C6-3 motors. Keith launched a “Baby Bertha” on a B6-4 and a “Big Bertha” on a B6-2. Dave Nordling launched a “Baby Bertha” on an A motor. Bill Inman & Jon Wells also launched model rocket kits, and John Krell launched a model kit on a G motor. (I will endeavor to do a better job of recording the rockets & motors that everyone uses at these launches for more specific reports in the future).

Keith Yoerg, Bill Inman (on the launch box), Waldo Stakes and Diana Castillo wait as the countdown progresses.

We did not have the new wireless Cobra firing system at the MTA site during this event, so we used the 4-pad controller that Dimitri built earlier this year. The controller split its time between this low-power launch pad and the water rockets which Dimitri had set up on the underground blockhouse.

Several of the model rockets ready to launch on the PVC launch pad built by Keith Yoerg

I will also mention that prior to these launches, we enjoyed a nice potluck BBQ of brats, (homegrown) potato salad, chips, beans, and corn. Several members contributed food which was expertly prepared by Becky. We’ve been doing this more often and seem to keep getting better at it every time!

WORK PARTY TASKS

In addition to the more exciting “fiery” aspects of the day, RRS members also completed a lot of routine maintenance at the MTA site. We completed several general organization tasks in the Dosa Building and the storage containers, and a security camera was installed on the Dosa Building. There was also a lengthy and robust conversation about methods to replace the aging blockhouse roof, which has been high on the the society’s list of desired site improvements for several years.

Keith Yoerg and Jon Wells discuss options for repairing the old blockhouse roof.
Security camera installed on the Dosa Building

How to Make 4-20 mA Current Loop Measurements

by Roger Lockhart of DATAQ Instruments

originally published 9/30/2013, reprinted with permission


It seems that at least one 4-20 milliamp (mA) measurement is required by our typical customer, and the way to do it is a constant source of confusion for many.  So I thought I’d zero in on the various 4-20 mA current loop configurations and elaborate on the specifics you need to know to make a successful measurement.  The following is ordered from the most to least common configuration, and I hope to cover all those that I encountered in customer applications.  If yours isn’t included, please contact DATAQ technical support.

dataq.com

4-20 mA Current Loop Basics

Sensors or other devices with a 4-20 mA current loop output are extremely common in industrial measurement and control applications. They are easy to deploy, have wide power supply requirements, generate a low noise output, and can be transmitted without loss over great distances. We encounter them all the time in both process control and basic measurement data logger and data acquisition applications.

The idea behind 4-20 mA current loop operation is that the sensor draws current from its power source in direct proportion to the mechanical property it measures. Take the example of a 100 psi sensor with a current loop output. With 0 psi applied, the sensor draws 4 mA from its power source. With 100 psi applied the sensor draws 20 mA. At 50 psi the sensor draws 12 mA and so on. The relationship of mechanical property measurement to current output is almost always linear, allowing the resulting current loop data to be scaled with a simple mx+b formula to reveal more useful measurements scaled into engineering units.

How you actually measure the 4-20 mA current loop signal is a function of the sensor’s architecture and the capabilities of the instrument you’ll use for the measurement.

Terminology

So that my discussion translates well across the various kinds of 4-20 mA current loop configurations, I’ve opted to standardize the terminology I use to describe each. Here’s an overview:

“E” (DC excitation)

Most configurations that follow will show a DC voltage excitation source that I denote as “E”. Many who use current loop sensors for the first time are surprised to learn that they need to supply this excitation source. Nonetheless, unless the sensor is self-powered (i.e. AC line powered) an external dc source is required. The good news is that this can sometimes be supplied by the instrument, and the range of acceptable supplied voltage values is usually very wide, typically 10 to 24 VDC.

“R” (shunt resistor)

Here’s a bit of trivia for you:

No instruments measure current directly.

They all do it indirectly by measuring the voltage dropped across a resistor of known value, and then they use Ohm’s Law to calculate actual current. The resistor is referred to as a “shunt”, is absolutely required to make a current measurement, and is either supplied externally to, or built into the measuring instrument. For clarity, I assume that it’s supplied externally.

“i” (current loop value ranging from 4 to 20 mA)

This is the 4 to 20 mA current signal generated by the sensor. Note that some sensors may valium draw 0 to 20 mA and even other values, but the vast majority of them use the 4 to 20 mA convention.

“v” (shunt voltage that’s proportional to current)

This is the voltage drop across the shunt that is actually measured by the instrument. Since our industry has standardized on a shunt value of 250 Ohms, “v” will range between 1 and 5 volts for a 4-20 mA current loop signal.

Note that shunt resistor value is arbitrary as long as it’s a known (fixed) value. You also need to ensure that it doesn’t burden the loop, so lower values are better than gabapentin higher.

Yes, I mean lower.

Remember that we’re working with current, not voltage, so the rules are inverted. Just as infinitely-high resistor loads work well for a voltage source, you can take the load all the way to zero Ohms for a current source without consequence.

 Self-Powered Sensors (Most Common)

I promised to order these configurations from most to least common, and the self-powered sensor just noses out the first runner up. Self-powered sensors are those that, well, power themselves. The sensor may have an integral ac power supply, thereby negating the need for an external DC power source. https://madronadermatology.com/accutane-online/

Or it may not be a sensor at all. It could be an output from a Programmable Logic Controller (PLC) or other source that is internally powered.

2-wire Sensors (Low-side Shunt)

Okay, this can get confusing for first-time  4-20 mA current loop users.

Yes, it is possible to both power the sensor and measure the current it draws over the same two wires. In the 2-wire examples shown here, only two wires connect the sensor to its power supply, and the sensor draws current from it in direct proportion to the mechanical property that it measures. As current changes, the voltage developed across resistor “R” will change, thus providing a signal that’s suitable to connect to a measuring instrument like a data logger or data acquisition antabuse system.

In most situations, care should be taken to place the resistor in the low-side of the loop as shown here, as opposed to the high-side. Doing so will allow non-isolated instruments to make the measurement. In the next section, I’ll deal with a high-side shunt placement and discuss these cautions in more detail.

2-wire Sensors (High-side Shunt)

This configuration is almost exactly like the low-side, 2-wire approach, but it places the shunt resistor in the high-side of the loop. Note that while the voltage across the resistor is proportional to the current drawn by the sensor (just like the low-side approach), there is also a common mode voltage (CMV) present on either side to ground. On one side to ground the CMV is equal to the supply voltage. On the other side to ground it’s equal to the supply voltage, less the voltage dropped by the resistor (v).

The presence of the CMVs places conditions on the instrument that you use to measure v. Specially, the instrument needs to have an isolated front end so it can float to the level of the CMV and still successfully make the measurement. Try this with a non-isolated, single-ended instrument and you will short-circuit the sensor to ground. A non-isolated differential instrument will either saturate or provide erroneous results.

3-wire Sensors

Three-wire sensors with a process current output have a separate wire for ground, signal (4-20 mA), and the power supply. This configuration is the easiest for current loop beginners to grasp, one input for power and a second for the current loop with a common ground. The primary advantage of a 3-wire sensor over its 2-wire counterpart is its ability to drive higher resistive loads. Resistors drop voltage for any given current in direct proportion to their resistance value. Holding current constant, higher resistances drop more voltage. Turning back to the 2-wire sensor and holding current constant, as the shunt resistance increases the voltage drop across it also increases. You might reach a point where the voltage dropped by the shunt lowers the voltage drop across the sensor below the minimum required for it to operate properly.

We had a customer whose 2-wire current loop measurements functioned beautifully until loop current reached about 18 mA, at which point everything went haywire. Upon close examination, we determined that the supply voltage she used was too low by at least 0.56 volts. She needed 2 mA more measurement to reach full scale, which translates to 0.56 V with her 250-Ohm resistor. The solution was to use a higher voltage power supply to ensure that the voltage drop across the sensor stayed above the minimum level. She could have also used a 3-wire sensor, which ensures that the voltage applied to the sensor is independent of shunt resistor voltage drop.

Watch Your Grounds (or use an isolated instrument)

Contrary to what many believe (and have been erroneously taught in school), grounds are almost never the same in industrial settings, exactly where most 4-20 mA current loop sensors are used.

Two or more grounds that are the same means that they are at the same potential. If so, a measurement between the grounds of the various field sensors and the instrument using a digital volt meter (DVM) on both its DC and AC settings will show zero volts, or very close to it.

In reality, you’ll measure at least several volts, and I’ve seen as much as 75 Volts. When grounds that are not at the same potential are tied together (which you need to do to make a measurement), current flows through them, creating several possible measurement outcomes for non-isolated instruments:

  1. The measurement is noisy.
  2. The measurement is inaccurate.
  3. You irreparably damage the instrument.
  4. You saturate the instrument (it’s not damaged, but you can’t make a successful measurement, either.)

To remedy these problems requires the following:

  1. Use an isolated instrument for your 4-20 mA current loop measurements. This single decision allows you to ignore all other grounding issues in exchange for successful measurements in any situation. If you don’t have an isolated instrument, read on…
  2. Ensure that the loop power source is isolated. This means that its output ground (the one connected to the sensor) is not tied to its input ground (the one that connects to AC line power.) An isolated power source means that the output ground can be tied to another ground (like a non-isolated instrument) without consequence.
  3. If using self-powered sensors, ensure that the low-side of the loop is isolated from its power source.
  4. If using sensors that require an external dc power source, ensure that the shunt resistor is placed in the low side of the loop (see “2-wire Sensors (Low-side Shunt)” above.)
  5. If you lack control over the power sources and determine that they are not isolated, then your only option is to power ALL devices (power supplies, self-powered sensors, the instrument, and its connected PC) from exactly the same power outlet. Don’t make the mistake of using outlets that are close to each other. If you run out of receptacles on a single outlet, then use a power strip.

Again, it’s worth repeating that all of the cautions associated with proper grounding disappear if an isolated instrument is used to make the measurement.

Sensors with 4-20 mA outputs are encountered in all disciplines and in many configurations.

Contact DATAQ with any questions that arise in your unique situation.

dataq.com


This article has been reprinted with permission from DATAQ Instruments, a manufacturer of quality data acquisition and data logger products used by many professionals and amateur rocketry hobbyists.  

The RRS is thankful to DATAQ for their assistance.

Also, you can watch DATAQ YouTube instructional videos on this and other subjects.

For information on DATAQ products, go to their website: 

www.dataq.com