The RRS had a small event at our private Mojave Test Area (MTA) on August 18, 2018, to allow Richard Garcia to test his liquid rocket motor. Richard built a pressure-fed, 1000-lbf kerosene-LOX motor including all of the static fire test stand equipment and control valves.
Richard had spent a good part of Friday and early Saturday getting his test stand mounted and ready. He had made arrangements to share the contents of a liquid oxygen dewar to supply the oxidizer he needed for his test with other RRS member, Sam Austin. Sam was also preparing to fire his liquid rocket motor at the Friends of Amateur Rocketry (FAR) site just south of the RRS MTA on this same day. Arriving early in the morning, I was glad to help Richard with the final preparations at the RRS MTA to start the initial checkouts and ultimately a successful hot-fire test.
Richard’s 1000 lbf kerosene/LOX motor was designed for a chamber pressure of 300 psig and used a pintle-type of injector with an ablative lined chamber and graphite nozzle.
He brought his motor hardware to the January 2018 meeting, but now it was finally time to prove his design with a hot-fire test.
Richard’s test used a high pressure nitrogen bottle to pressurize his propellant tanks, the left one for liquid oxygen (LOX) and the right one for kerosene. This regulated inert gas source also provided pneumatic pressure for the propellant valve actuators.
The top half of the thrust stand with the tanks and valves is fixed to the structure. The engine is suspended below and is secured to a plate which was mounted to an S-type load cell. These devices are an affordable means of measuring both compressive and tensile forces by the internal strain gauges built into them.
Caution was taken to keep the motor clean during handling and installation by caps on the ports and closing off the nozzle with aluminum foil.
Most of the testing seemed to work well. The motor had a clean start and stable run time for the full 5 seconds duration that Richard had predicted. Post-test inspection showed the engine to be in very good condition.
Tank pressure measurements were able to be recorded, however the thrust and chamber pressure (Pc) measurements were corrupted. Richard is working on downloading the hot-fire video to be posted on the RRS YouTube channel.
Soon he’ll disassemble the injector and chamber to see if the motor can be fired again. This was a great success for the RRS and we hope this to be the start of several liquid motor hot-fire tests as the RRS continues to improve on this powerful type of rocket.
I hope that Richard will be able to present his results at the next RRS monthly meeting on the 2nd Friday of the month. The next RRS meeting will be Friday, September 14, 2018 at the Ken Nakaoka Community Center in Gardena, California.
The RRS would also like to thank Mark Holthaus and Rick Maschek of FAR for their assistance on this test.
***