by Bill Claybaugh, RRS.ORG
In a remarkable demonstration of persistence and luck, RRS President Osvaldo Tarditti was able to find the spent booster rocket. A few photos were captured of the recovered rocket.
Based on the impact location, it was possible to reconstruct a possible flight trajectory by assuming the motor performed as designed and further assuming the front of the vehicle was a flat plate and that the mass did not include the mass of the payload. We know from video, telemetry, and recovery of the payload that the payload separated from the booster about one second into the flight.
This analysis suggests a burnout velocity of about 1550 feet/second with a peak altitude of about 21,200 feet given the known range of about 14,300 feet. This analysis gives a flight time of about 74.5 seconds and an impact velocity of about 820 feet/second.
Given the observation that the vehicle stopped in about 2 inches (based on the depth of the depression in the hardpan) before falling on its side; we can estimate the impact deceleration. Given an average velocity during impact of about 410 feet/second because the final velocity is zero and it took only 0.167 feet to come to rest, it follows that the impact occurred over 0.000407 seconds. This, in turn, indicates an average deceleration of about 31,250 g’s.
The reason for the vehicle turning to the Northeast starting at about 0.20 seconds into the flight remains unclear. There is no evidence either in video or in images of the recovered hardware of any hot gas leak nor of any transient thrust vector anomaly. The wind was less than 5 miles per hour and from the Northwest; if it had caused a turn, we would expect it to be toward the Northwest, not the Northeast as observed. The only plausible theory at this time is that part of the belly-band became embedded between the nose of a fin and the rocket body causing the turn via differential drag and then fell away from the vehicle, causing the resumption of normal flight. Once the recovered hardware is available for inspection, we will test each fin nose to see if a gap exists that might have caught the 0.020-inch thick belly-band.
It also remains unclear as to why the payload separated about 1 second after launch. The recovered payload showed that both initiators had fired (by design, if one fires the other is ignited; thus, only one signal is required to fire both) but did not show any evidence of having been “swaged” or otherwise subject to being forced off the rocket by aerodynamic or other forces. Neither does the matching front end of the rocket show any evidence for the payload having been forced off. We thus conclude that one of the flight computers ordered the firing of the initiators.
However, the main flight computer stopped working just after 0.80 seconds into the flight for an unknown reason after recovery it was still connected to its battery, which showed the expected 3.87 volts. Further, the limited data recovered from that computer shows that it did not initiate separation of the payload: the firing circuit shows continuity throughout the period that the computer was operating and separately records that no signal was sent by that computer.
This points to the backup flight computer. That hardware is currently at the manufacture for repair, after which we hope to extract continuity data with regard to its firing status. Hopefully, once that and other data is available from the backup computer we will be able to establish when it ordered the separation of the payload, and why.
A second update to this firing report is expected. The booster has been packaged up for a more detailed inspection.