MTA Launch Event, 2021-10-16

by Bill Claybaugh and Dave Nordling, RRS


This firing report will be the first in a series of three articles posted on RRS.ORG. This report will cover the launch event and preparations over many days made by RRS member, Bill Claybaugh. As the attending pyrotechnic operator for this firing event, I have summarized this work for the benefit of our readers with the permission and oversight of Bill.

Bill Claybaugh has been planning to build, load and launch a large 6-inch solid motor for many months and the first attempt had finally come to pass at the RRS Mojave Test Area (MTA) over the span of almost a week starting Tuesday, October 12 and culminating in a launch on Saturday, October 16, 2021. He had studied this project very carefully and built a great many new parts and tools from his home in Colorado. The scope of this project is quite extensive and the larger goal was to enable larger solid motor building by other members of the RRS at the MTA. The 6-inch motor was just the first in what will hopefully be a growing series of similar and larger scale solid motors.

Bill Claybaugh’s description of his six-inch rocket from his Flight Readiness Review presentation.

The predicted performance of this 6-inch single grain motor was 1350 lbf of thrust for a duration of 8.35 seconds which was expected to exceed 70,000 feet; well above the RRS MTA’s standard 50,000 foot altitude waiver. This “P” sized solid motor in this vehicle required an FAA Certificate of Authorization (COA) for this flight on the prescribed dates during daylight hours. The submission of Monte Carlo simulations of the trajectory (splash analysis) were graciously performed by Chuck Rogers (author of the RASAero II software) and a necessary part of the process to verify no significant concerns for impacting nearby populated areas or structures. Also, the FAA Class 3 rocket waiver that was granted would require the launch team to contact the relevant air traffic control 15 minutes in advance of the intended launch for final permission to proceed. A separate article discussing this subject in more detail will be coming soon.

The rocket had two streamers for a recovery system which were intended to be sufficient for easier spotting of the rocket in descent rather than provide a soft landing.

Many members of the society participated in this project over the several days needed to prepare and conduct the mixing, pouring and casting process. RRS members Dave Crisalli and George Garboden lended their time and expertise in solid motor building which led to a stellar finished product on Thursday. Several of Bill’s family and friends attended and supported the preparations for launch.

Bill Claybaugh’s four-finned rocket with an end view of the four-fin 6-inch single-grain motor loaded and ready for the nozzle installation. RRS president, Osvaldo Tarditti, talks with Bill on the morning before launch.
The forward and aft views of the nozzle assembly of the Claybaugh six-inch rocket.
Bill Claybaugh holds his payload system without the fiberglass long-ogive nosecone cover.
Pictures of the different parts of the pneumatic separation system and payload.
Ed Wranoski finishes the mating of the payload on top of the single stage solid motor checking the alignment before preparing to move the rocket to the launch pad.

Given the size of the 6-inch rocket, Bill designed and built a T-slot type of launch rail with a 24-foot length on an aluminum truss structure. The system was designed to be deployed in a green-field site and easily assembled by a small team of people. There were some challenges in getting the design to work but through the combined efforts of those at the site during the afternoon and early evening on Friday, the erecting and loading process was safely completed. Susan and Ed Wranoski both had a lot of great suggestions about getting the right placement of the come-alongs to bring the launcher up to a sufficient angle to secure it by the chains and strap anchors around the pad.

The new launch rail system will be the subject of a separate article coming later on RRS.ORG. Design improvements and substantial changes are being planned such that the next launch event will have an easier time in raising and lowering this important asset for the launching of larger rockets from the MTA.

Testing of the erecting process took place into the early evening by headlights. These operations provided valuable information making launch preparations the following morning far simpler.
Bill Claybaugh, Mike Pohlmiller and Ed Wranoski secured the 6-inch rocket by two bellybands in flyaway railguide system.

During the first launch operations of the rocket, the wireless telemetry wasn’t receiving signals. After restarting the computer and replacing the nosecone, the pyrotechnic charges in the recovery system accidentally fired due to a short. The payload system was removed, inspected and replacement pyrotechnic charges installed. After protecting the terminals from a similar short during final installation of the payload and nosecone, the telemetry system was working and the launch could proceed.

The nosecone being replaced after a quick test of the payload system.
Bill’s 6-inch rocket on the rails and secured for launch.

The launch event coincided with the launch operations of our neighbors’ (FAR). We were in constant communication to assure everyone was under cover at the proper times. The weiather was nearly ideal with very low winds the whole day. After road and air checks were completed, we prepared for launch.

Bill Claybaugh prepares for firing with RRS president, Osvaldo Tarditti, amd others ready to film and photograph the launch.
Still captured from the launch footage showing the rocket clearing the tower.
Last still picture of Bill’s 6-inch rocket before going out of view of the camera.

The initial launch was swift and powerful as the motor ignited and came to full thrust leaving the launch rail. The rocket canted to the northeast opposite the intended direction of the launch rail and the vehicle appeared to corkscrew as the motor burned to its full duration before going out of sight. The recovery system appears to have fired early as one of the streamers and the entire payload module fell back to the northern side of the MTA. The spent rocket motor casing has not yet been recovered. Bill was able to bring back the payload segment for inspection at the MTA while others continued the search for the rocket.

Bill disassembles the recovered payload system after its short descent back to the ground.
Both pyrotechnic separation charges had fired.
The antenna snapped off and was not found.
Recovered flyaway railguides showed signs of recontact from the tail fins from the sharp tears and rips seen. This is a common occurrence with flyaway railguides and they can be refurbished for the next flight.

Based on review of video footage, it appears the sudden turn uprange occurred at around 100 feet and took less than 1/4 second.  The current thinking is that the separation system depressurized, producing the side-thrust that caused the sharp turn after leaving the rail. It is assumed the telemetry loss of signal (LOS) was a result of the antenna snapping off during this sudden turn. LOS occurred at 119 feet and 425 ft/sec. About 0.25 seconds later, the payload can be seen starting to fall away from the rocket which can only occur if the system is depressurized. The payload was recovered about 300 feet from the launch tower and on the ‘new’ azimuth.

After the initiators fire–and both were fired–it would be expected that applying pressure to the quick-disconnect (QD) fitting would:

(1.) NOT result in the four retention pins extending, and,

(2.) would cause venting through the diffusers. 

That is, the burst disk is supposed to be punctured due to the piston driving the hammer through it when the initiators fired and any gas generated in the system is vented past the burst disk and through the diffusers.

The recovered flight hardware instead extended all four pins, did not vent through the diffuser, and did vent through the outlet reserved for the hot initiator gases.  This means that the burst disk was not opened and pressurizing gas was somehow leaking into the hot gas circuit.  The image below of the burst disk shows its condition as found upon opening.

Burst disk valve distorted but not penetrated as designed.


Further disassembly showed that the O-ring seal separating the hot and cold gas circuits around the hammer that penetrates the burst disk appeared damaged from heat. That seal damage was allowing the cold gas to escape into the hot gas circuit and then vent. Further, the O-ring prevented hot gas from getting to the subject O-ring around the piston that drives the hammer through the burst disk was in two pieces and showed clear evidence for melting at the edges. Thus, when the dual-redundant initiators fired, the piston O-ring failed (or had previously failed, although it was undamaged when installed) which allowed hot gas to leak past the piston (which nonetheless hit the burst disk hard enough to dent it but not tear it) and to damage the O-ring separating the hot-gas and cold-gas circuits in the valve. These two damaged O-rings then allowed cold gas to vent via the hot gas circuit, resulting in the payload seperating from the rocket.

Naturally, none of these failures ever occured in previous ground testing.

Wind shear was considered as a cause for the sudden change in vehicle direction witnessed during launch right after clearing the rail. Even in calm wind conditions on the ground, there have been past launch events at the MTA which have had sharp unseen discontinuities in the wind profile causing serious perturbation of the flight path in a rocket flight. This potential cause can not be fully excluded, but it is thought to be unlikely..

The venting of the hot and cold gas _may_ have caused the sudden pitch over as seen in video footage. As of now, this is being carried as a working hypothesis.  However, none of this explains why the initiators apparently fired a few fractions of a second after lift-off.

The telemetry data will soon be downloaded from the ground station to see if there was any indication of the beginning of this sequence of events. Because the ground station showed loss of signal (LOS) at 119 feet, and that LOS appears to have been the result of the antenna snapping off in the course of the sudden pitch change. There might not be any recorded data of the relevant accelerations or rates from the ground station.

This report will be updated as new information becomes available.

Examining the launch rail and supporting cables before the planned lowering.
Former RRS member, Kevin Sagis helps in gradually releasing the come-along chain bringing the heavy launch rail back to horizontal as the rest of the team managed the straps.

In conclusion of that day’s launch event, with the recovered parts from the rocket payload examined and packed for shipment back to Bill’s home, the remaining team worked to carefully lower the launch rail back to horizontal using the reversed process used to successfully and safely raise it. The launch rail support legs were left at the MTA as Bill and Mike Pohlmiller were going to consider a new design approach using the same T-slot backbone. Although there was no evidence of the rocket hanging up on any discontinuity, some repairs of the interconnections between the three segments should allow the combined rail path to be more straight.

The RRS is grateful to the many members and participants we had over those several few days. It was a big success despite some significant challenges and disappointment in the results. The project was designed to be a pathfinder to subsequent large solid motor projects and we expect the next motor build and improved payload system design in the new calendar year, 2022.


November 2019 meeting

by Dave Nordling, Secretary, Reaction Research Society


The Reaction Research Society (RRS) held it’s monthly meeting on November 8, 2019 at the Ken Nakaoka Community Center in Gardena, California. The society had a full agenda plus our annual nominations for the executive council. Frank Miuccio attempted to establish a teleconference at the meeting to connect our director of research, Richard Garcia, and an outside organization that wanted to address the society. This teleconferencing was successful and the society will consider having more of these to help bring in more participants on special topics.

[1] Treasurer’s report on membership and dues status

The RRS treasurer is conducting a review of our membership roster to not only update our records with the many new members that have joined us this year, but also to determine the dues status for each. Like in all non-profit organizations, regular annual dues payment is essential to keeping the society funded for the many projects we do and are planning. Upgrades at the MTA are also impacted if our membership does not keep their dues payments current.

Chris’s report was not ready at this month’s meeting, but he will be soon notifying some of our delinquent members that they need to keep their dues paid to remain in active status. It is the duty of all RRS members to keep their contact information current with the RRS treasurer. The society can not be responsible for missing communications if our members do not do their part by making communication possible. Also, members who are not current in their dues payment risk losing their active status with the society.

treasurer@rrs.org

I have always paid my dues to the society on January 1st of each new year. This greatly simplifies the process and I need no reminder to do so. Membership dues ($40 USD per year) to the society can be paid through the “Donate” button on the RRS.ORG website which links to Paypal.

We remind all of our donors and those paying dues in this manner to include your name in the “Notes” section along with the purpose of your donation. Without including your name, the RRS can not tell who has paid their dues.

The RRS.ORG website has more information on this subject. For any questions, please contact the RRS treasurer.

[2] Update on the next RRS MTA launch event with LAPD CSP and 99th Street Elementary School

Frank, Larry and Osvaldo are in the middle of another class, this time with 99th Street Elementary in partnership with the Los Angeles Police Department (LAPD) Community Safety Partnership (CSP). The class is going well and the final launch event is still planned for Saturday, December 7, 2019.

At this same launch event, we are also planning to host the University of Southern California’s (USC) Rocket Propulsion Laboratory (RPL) with the launch of their latest solid motor powered rocket. USC has been making continuing progress even after their landmark flight to be the first university-built rocket to break the von Karman line into space.

[3] Preparations for the 2020 RRS symposium

With the society approving the symposium for our fourth year in a row, Frank is working with the Ken Nakaoka Community Center to establish the date. Tentatively, the 2020 RRS symposium will be held Saturday, March 28, 2020. The society has decided to try to hold the symposium earlier in the year to avoid the onset of the summer heat which makes the event very uncomfortable in the absence of climate control at the Ken Nakaoka Community Center.

Future site of the 2020 RRS symposium

More information on this subject will be posted as it develops. Our symposium coordinator for the 2020 event will again be our society vice president, Frank Miuccio.

vicepresident@rrs.org

[4] RRS solid propellant making classes at the MTA

The RRS has been approached by an outside organization about conducting solid propellant motor making classes. Many years ago, the RRS held a few of these events which became very popular. The RRS has not yet decided if we will restart these classes, but a group is examining the possibility and will report back to the society on the viability of such a project.

composite grain, before and after

[5] 2020 Constitutional Committee progress report

pending… carried over from October 2019 meeting report

[6] Annual elections for the RRS executive council

As required by our Constitution, the RRS appoints an election chairman to oversee and execute the process of nominations and balloting for each of the four executive council offices for new terms starting in the new calendar year. Larry Hoffing, again, agreed to be our election chairman for this cycle.

Nominations were held and were open to our administrative membership. Nominations were received and our election chairman will be sending out ballots by email. This is another good example of why all members should keep their contact information current and remain in active status with the society. Balloting will be closed prior to the next monthly meeting in December and the results announced at that meeting.

[7] CSFM committee on amateur rocketry

Last month, the RRS and Mark Holthaus of the Friends of Amateur Rocketry (FAR) met to discuss a list of proposed changes to the California State Fire Marshal’s (CSFM) definitions that govern amateur rocketry. This small group was intended to be made from active amateur rocketry groups around California to help advise the CSFM subcommittee on changes that would help improve regulation of amateur rocketry and make needed clarifications to help all groups continue to operate safely and legally.

from left to right, Mark Holthaus (Treasurer of FAR), Osvaldo Tarditti (RRS president), Larry Hoffing (RRS events coordinator), Dave Nordling (RRS secretary) meet to discuss proposed definition changes to CSFM laws governing amateur rocketry, 10/15/2019

The RRS and FAR held a second meeting at the Ken Nakaoka Community Center which included David Reese of the Rocketry Organization of California (ROC). ROC members, Chris Kobel and David Reese have been very helpful in providing helpful improvements to how the certain classes of rocketry are defined.

This amateur rocketry committee will be presenting their collective suggestions to the Fire Marshal in early December 2019. The RRS, FAR, ROC and the rest of the amateur rocketry groups in California are glad to assist the CSFM office in making these suggested updates.

[8] Social media updates

There was no report from Alastair Martin and/or Bill Janczewski this month for social media improvements for the Reaction Research Society. We hope to have more to discuss in the next month on this regular topic. As always, members are welcome to offer their advice and proposals to either or both of our media coordinators.

Alastair and I did have a conversation about expanding our following on Instagram. We will continue to show the highlights of our events and the people involved, but I hope to bring more technical content which seems to be our primary source of interest.

See the RRS on Instagram: reactionresearchsociety

Alastair and his production company, Production Tribe LLC, has created yet another podcast in the “Before SpaceX” series with special guest, rocket propulsion expert, author and RRS member, James R. “Jim” French. RRS secretary, Dave Nordling, and RRS director of research, Richard Garcia, supported this excellent discussion about the American Rocket Company (AMROC), a space start-up company in the 1980’s and 1990’s. The show is still in editing and will be posted very soon his website.

https://podcasts.apple.com/us/podcast/rocket-talk-radio/id1474556513

[9] Compton Comet STEM club formation and program

Several students from the Compton College STEM club attended the November meeting of the RRS along with their advisor and fellow RRS member, Kent Schwitkis. Jamie Alvarez, the STEM club president was in attendance. The Compton Comet is the project name for the liquid rocket projects that the Compton College team is working on. There are about 20 students in the group and the RRS is glad to support this team and the other university teams looking to compete or at least expand their range of practical skills.

The Compton Comet team has been holding meetings at Tomorrow’s Aeronautical Museum (TAM) at the Compton/Woodley airport. They are planning a few trips to inspect launch and additional hardware assembly sites and make a report back to the RRS at the December 2019 meeting. RRS member, Waldo Stakes, has also been an important part of this program.

The STEM club is having another Estes rocket competition later this month. The first of these events was very successful. Part of the experience is getting practice with the simpler rockets and using OpenRocket simulation software to make and verify predictions.

IN CLOSING

RRS members, Frank Miuccio, Alastair Martin and Kent Schwitkis contributed to this report. The next RRS meeting will be December 13, 2019. If there are any corrections or additions to make for the monthly report, please contact the RRS secretary.

secretary@rrs.org