The society met at the Compton Airport front office again for our monthly meeting on October 14th. Mike LaGrange joined us by teleconference for the first time. Joel Cool-Panama was welcomed as our newest administrative member.
We first reviewed past events,
USC RPL sample grain burns
pad anchor modifications
restroom progress at the 10/1/22 work event
We spoke of pending events
Bill Claybaugh’s new pad, 10/20-10/22
Aerospace Corp launch of experimental motor, 10/20
next work event, 11/5-11/6, more plumbing
USC RPL static fire on 11/12
Events subject to change, public calendar soon to come online with the new website
The RRS reported quarterly dividend from Smile.amazon.com
Further concrete repair work is needed. Four of the 28 mounting holes need more work. This will likely be done by the society. We need to determine best way to extract old anchors and patch the holes with sufficient time for curing before redrilling. USC RPL will assist by drilling final anchors once repair work is done. USC has been very helpful in making this important site improvement.
A budget update on restroom with expenses to date and how much to finish. Last estimate showed we’re on target. An update is coming before next month. Our goal is for the restroom to become operational by year’s end.
The society is working hard to help other members to become pyro-ops. More pyro-ops means safer operations and greater flexibility in future events. Frank and Bill Inman have their letters and are working on their applications. The best way to start is being active with society events and apprenticing under experienced and licensed individuals.
RRS has updated their flight waiver with the FAA to 100,000 feet. Some planning and advance notice required. Laminated copy of our waiver and instructions will be put in the Dosa Bldg. Also, launch requirements available from the RRS president.
Patrick Finley of the Collegiate Propulsive Lander Challenge attended. He explained his foundation to encourage propulsive landing technologies among university groups. Five technology prizes. The RRS is a supporter of this initiative. He can be reached at “patrick@landerchallenge.space”
Wolfram Blume has been working on the Gas Guzzler over the summer. Fuel pump and flameholder fixes. Next flight could be in December?
Bill Inman is building the 2nd generation Solar Cat with fellow member Dale Talcott in Nevada. Subscale prototype built in the summer had excellent focus and heating. Next test at MTA could be December, perhaps January.
John Krell’s avionics chips have had some improvements. Now can do 16 channels at over 1 kHz all on a chip fitting in a slim alpha payload tube
First meeting with LACMA by the president and VP on a STEAM project focused on the arts. Further discussions will better define the RRS role.
2023 Symposium will celebrate our 80th anniversary, tentative date is April 8. Researching locations, food service and potential speakers. Official launch will be in the new year.
New launch rail design proposed for high power rockets using 24-feet of 1515 launch rail and a 1-ton hand-winch to operate. It will be an outdoor fixed asset and supplement existing launch rails. Need to get a materials list and drawings made for a contractor quote.
Larger 60-foot launch rail for liquid rockets is in the planning stages. The RRS has had several entities interested in using such an asset.
We will soon be starting the effort to sort out the old equipment in the north yard, determine the purpose, origin, and dispose or refurbish each item. We must use our space wisely and not store articles without a relevant purpose. Junk will always fill a void.
RRS may be getting a new pair of storage containers and fire-fighting equipment. Council is in discussions and supportive of this site improvement. More details later.
Some at the meeting indicated strong interest in learning how to weld. The RRS is seeking an instructor which may give us training for a nominal fee. More on this next month.
3D printers were discussed near the end of the meeting. Several members have the devices, but design tools are just as important. Google Sketchup, Solidworks and CATIA are options but costs on some can be prohibitive. This would make a fine topic for a future article on RRS.ORG
Nominations for executive council offices will be at the November meeting next month. An election chairman will be appointed who is neither a current office holder or a candidate for office.
Next meeting at Compton Airport front office on 11/11/2022 at 7:30pm.
The latest meeting of the Reaction Research Society took place Friday, August 13th and had 12 attendees who came and went, including a prospective student member. We had a lot of topics to discuss and some members had to leave early so we got right down to society business from the start of the meeting.
YOUTH ROCKETRY CLASS PLANNING & UPDATES
The RRS starting to plan for youth outreach classes – which have been on hold during the COVID-19 pandemic. Unfortunately, due to the delta variant the LAPD classes that were being planned for September at the Strive learning center have been postponed. However, it looks like we are on track to begin classes with the Boyle Heights YMCA after labor day.
This class is expected to have up to 60 students – which will be split into 2 groups that will attend every other Friday at 4pm on a rotating schedule. The current plan is to hold 5 classes per group, which means the program will run for 10 straight weeks. Any RRS member interested in helping during these classes will be required to complete a LiveScan background check. Please contact Frank at vicepresident@rrs.org for more details if interested.
The current plan is for each student to build their own “Baby Bertha” model rocket manufactured by Estes. The EC is currently organizing logistics to allow each student an opportunity to fly their rocket twice (assuming the first launch is successful, of course!) at our MTA site in late October or early November. In addition, we are looking at the instructors building a high power rocket in tandem to show the similarities and differences between the construction methods. A demonstration flight of the high power rocket would be held on the same day as the model rocket flights, to give the kids a sense of what a more powerful flight would look like.
Discussion at the meeting included ideas around fast-drying non-toxic glue options for the model rockets, 3D printed fin alignment jigs to ensure arrow-straight flights of the kits, and logistics around the launch day like adding more low-power launch pad capabilities to the MTA site. We may also try to add an onboard camera to the high power kit to show the students a view of the ground falling away from onboard the rocket!
PERMANENT BATHROOM & OTHER MTA UPGRADES
Progress is continuing on the permanent RRS Bathroom structure. Work on cutting holes for doors and windows has been completed on the 20-foot shipping container and delivery is expected imminently to the new work site at Wilbur’s hangar. The next stages of construction including adding plumbing, fixtures, and the doors and windows.
RRS president Osvaldo informed the membership that he purchased a forklift attachment for the backhoe that is stationed in the Mojave desert – which will be a great help with moving tanks and other heavy items that are often required for liquid rocket tests at the MTA. Members also discussed upgrading the launch structures at the site, including an idea for an adapter to allow Alpha and Beta micrograin rockets to use the same rail system and moving over the large launch tower from the “graveyard” on the northern end of the MTA to a more permanent & upright location.
AUGUST MTA LAUNCH EVENTS
After a short review of the July MTA events (writeups by Dave Nordling can be found here and here), members were briefed on the “long campaign” work that is underway by the University of Michigan rocket club “MASA” this month. While typical events at our desert site last only 1-2 days, this campaign is expected to run for 10 or even https://www.socalstairlifts.com/ambien-zolpidem-online 14 days total. The exact length of time that they will be at the site depends on how quickly they are able to meet their objectives.
The ultimate goal of the campaign is to conduct a static, hot fire of their 2,500 lbf (10s total impulse) liquid rocket engine. The engine runs on RP-1 and LOX, and utilizes liquid nitrogen and helium as pressurants. Several RRS members and Pryotechnic Operators have generously volunteered their time on both weekdays and weekends to assist the student team in meeting their goals. A writeup of the events will be posted to this site after the testing.
OSVALDO’S MICROGRAIN ROCKET AVIONICS
RRS president Osvaldo Tarditti provided a show-and-tell of his screw type avionics switch, a very clever xanax over the counter way to activate onboard rocket electronics when space is at a premium. This is certainly the case in the RRS Alpha and Beta micrograin rockets – which this switch was designed for. The basic mechanism uses 2 sets of electrically separated nuts with wire leads soldered on, which are epoxied to a bulkhead and affixed to the inside of the rocket’s nosecone.
When a screw is inserted – the circuit is completed between the nuts and the attached electronics turn on. With proper placement of the bulkhead and a hole drilled in the nosecone, this screw can be installed from the outside of the rocket just prior to launch.
Osvaldo completed the avionics package with a mercury switch and a cheap timing circuit board with multiple programming options. When placed together and activated on the launch pad, the mercury switch is jostled during launch which starts the countdown on the timing circuit board. When pre-programmed with the proper timing delay, the timing board countdown will coincide with the apogee of the rocket’s flight path and deploy a parachute. The hope is cheap stromectol that this will allow for a more consistent recovery of Alpha & Beta rockets after launches.
CESARONI TECHNOLOGY / CESARONI AEROSPACE
Late in the meeting we were joined by RRS member and rocketry entrepreneur Anthony Cesaroni, who told members more about his companies and the time he spent at the MTA back in the 90s. With locations in Toronto, Florida, and Spaceport America (New Mexico) Anthony’s companies are major players in munitions, solid rocket motors, and even liquid engine components for Virgin Galactic. Among the major projects underway currently is a full 4-stage orbital vehicle, with hopes of full launches from Wallops and Kennedy Space Center in the 2023/2024 timeframe. Members were very excited welcome Anthony back into the fold and hear about the great work his companies are doing.
RRS WEBSITE UPDATES
The final topic of the evening was regarding updates to this website. The general consensus among members was that it is time for a fresh look and modernization to the website, and there was a robust discussion of the different avenues (and associated prices) that could be pursued. Anyone interested in helping to make this a reality can contact RRS secretary Keith at secretary@rrs.org.
NEXT MONTHLY MEETING
The next RRS monthly meeting will be held virtually on Friday, August 11th at 7:30 pm pacific time. Current members will receive an invite via e-mail the week of the meeting. Non-members (or members who have not received recent invites) can request an invitation by sending an email to:
secretary@rrs.org
Please check your spam folders and add secretary@rrs.org to your email whitelist to make sure you receive the invitation.
In the absence of our secretary, I took a few notes from the meeting. This is what I recorded. Contact the RRS secretary for updates and corrections.
The Reaction Research Society held its monthly meeting by teleconference on August 14, 2020. Our monthly meetings are always held on the 2nd Friday of every month. We’ve had a lot of success with holding our meetings remotely and we will likely continue for the next coming months to continue our commitment to safety in light of the pandemic. Our membership is in regular contact with our community which has allowed us to promote and hold events including our first launch at the Mojave Test Area (MTA) on July 25, 2020. You can read the details in the firing report posted on this website.
Our members are doing well and thus far no one has reported being infected with COVID-19 which we hope continues to be the case. Frank is in regular contact with the Los Angeles Police Department’s (LAPD) Community Safety Partnership (CSP) but under current circumstances, the next school event may not be until next year. Options are being considered on how to continue our educational programs while maintaining social distancing.
REVIEW OF THE 7/25/2020 LAUNCH EVENT OPERATIONS
The first topic was the recent launch event we held on July 25th at the Mojave Test Area for the first time since the start of the pandemic. We had some difficulties in operating under the summer heat (106 Fahenheit at the peak) but this is nothing unusual for this time of year. Many of us were well prepared for the hot sun with our hats, sunscreen and iced beverages and chilled water. We also did a good job of watching out for each other. Still, the heat was responsible for leaving all but one of the micrograin rockets downrange. It also underscores the importance good planning, coordination and putting safety over all other considerations. We had several mis-fires which we were able to resolve, but maintaining discipline during the event proved to be a larger challenge. The launch protocols will be explained more thoroughly in the next safety briefing. The meeting highlighted that every member and pyro-op attending the event holds a joint responsibilty for the safety of all and it starts with self-discipline and patience by all.
We also discussed proper protocols such as announcing the pyro-op in charge well before the event and the necessity of providing detailed information about the intended operations to the pyro-op in charge in advance. Most of the planned projects were well understood as they were micrograin rockets and the previous hybrid rocket attempted at the last launch event.
DATA REVIEW OF THE STANDARD ALPHA FLIGHT OF 7/25/2020
The only micrograin rocket to be recovered from the launch event of 7/25/2020 was the standard alpha with plain steel nozzle. John Krell has been developing progressively better and more powerful avionics payloads designed to fit the narrow confines of the RRS standard alpha payload tube. John was able to spot and recover one of his payloads and process the flight data captured that day. The avionics payload was intact after being extracted from the desert floor including the solid-state data chip. John was able to recover the data and accurately reveal the huge acceleration of the RRS standard alpha with unprecedented accuracy. A peak acceleration of 114 G’s was recorded at roughly 0.3 seconds just before tail-off and burn-out at 0.4 seconds from launch. I was able to screen capture his plot below.
The second plot shows the velocity derived from the accelerometer readings in the half-second which captures burnout at 0.4 seconds. Burnout velocity was measured at 670 feet/second which is consistent with prior data and trajectory predictions. The alpha is subsonic but travels at substantial speed from the swift acceleration. Given the high air temperature that day, 106 Fahrenheit, the speed of sound was 1165 ft/sec. The altitude of burnout was determined to be 130 feet which is consistent with prior flight data and high speed video footage.
The third plot was made for the whole flight of standard alpha from the 7/25/2020 event from launch to impact at 35 seconds. Given the roets were impacting 2000 to 3000 feet downrange, the sound delay matches with the time to impact witnessed in the observation bunker. The maximum altitude was just over 4,400 feet based on the barometric pressure measurements using the 1976 standard atmosphere model. Base atmospheric pressure reading at the start of the flight shows the elevation of alpha launch rail platform is 2,048 feet.
John Krell has really accomplished something with these custom avionics packages. He has been mentoring some of our other RRS members and the society encourages other members to build and fly their own payloads to spread the knowledge.
The society hopes to recover the other two alphas and the beta for further data analysis. Both of the unrecovered alphas from this last launch event had ceramic coated nozzles which should not erode. This should result in a more ideal performance as the throat area will not open up. The actual effect of this design improvement can best be assessed with recorded flight data. Also, we hope to compare the trajectory of the four-foot propellant tube with the standard length. Lastly. if the beta is recovered with recorded flight data, we may be able to assess its performance in unprecedented detail. The society hopes to report this flight data soon.
IMPROVEMENTS TO THE NITROUS OXIDE FILL/DRAIN MANIFOLD
The failure to launch the second build of the hybrid rocket was discussed at the August 2020 meeting. After discussing the launch procedures and corrective actions followed during the attempt to launch the nitrous oxide hybrid at the MTA with Osvaldo (the Level 1 pyro-op in charge) and racing experts at Nitrous Supply Inc., Huntington Beach, California, the cause of the fill valve’s failure to open became clear.
nitroussupply.com
In the racing industry, these normally-closed direct-acting solenoid valves are commonly used to open the flow of stored nitrous oxide bottles against the full supply pressure in the storage bottle. These are called “purge solenoid valves” among racers because it is this solenoid valve that opens the flow of nitrous oxide which displaces or purges out the air in the engine lines during the race. Buying these 12-volt DC high pressure solenoid valves from racing suppliers is much cheaper given they are made in greater numbers for the racing industry. (~$120 each versus $400+ each from reputable solenoid valve manufacturers).
In researching common designs for normally closed (NC) solenoid valves, the excessive heat of that day simply created too much inlet pressure against the internal valve seat for the electromagnetic solenoid coil to overcome and open the flow path. 1000 psig is likely the limit to reliably open these valves according to advice given by Nitrous Supply Inc. who has decades of practical experience at racing tracks around the country using purge solenoid valves for an application nearly identical to the needs of hybrid rocketry fill and drain operations. The ambient temperature at the MTA on launch day was creating a bottle temperature of 1400 psig accordling to the bottle pressure gauge and the separate pressure gauge in the manifold when the bottle was opened. This is well above the 900 psi recommended pressure range seen by marking on the gauge. The bottle, valve body and fittings are rated for these higher pressures, but opening mechanism of the solenoid valve was not.
A color-coded example of direct-acting normally closed solenoid valve is below. Blue shows the high pressure fluid path which is holding the seat down along with some assistance from an internal spring only for low inlet pressure conditions. With current applied to the electromagnetic solenoid (Orange), it pulls up on the moving armature (in red) which then allows the fluid to slip past the seal and through the flow control orifice when commanded open. Only a slight amount of movement is necessary to lift open the valve. However, if the fluid inlet pressure is too great, the solenoid can not provide enough force to lift and open the seal, therefore the valve stays shut.
To understand the relationship between pressure and temperature of the nitrous oxide you must consult the vapor pressure curve for nitrous oxide. This set of data points spans between the triple point and critical point of any pure fluid. NIST provides accurate data to generate such a curve.
webbook.nist.gov
The critical point of any pure fluid is where the distinction between gas and liquid phases disappears. This is not necessarily hazardous but it does mark a fundamental change in fluid behavior. The critical point of nitrous oxide (N2O) is 1053.3 psia and 97.6 degrees Fahrenheit according to Air Products company literature. This means the nitrous oxide conditions in the bottle at the launch (1400 psig as read on the gauges with an fluid temperature of 106 Fahrenheit or more) was well in the supercritical range, but again, this is only hazardous if the pressure vessels and plumbing connections aren’t able to safely contain the pressure. If the solenoid valve could have been opened, the pressure drop would have returned the supercritical fluid back to normal conitions and would flow dense liquid into the rocket when the fluid naturally chills down from the expansion.
Keeping the bottle pressure below 1000 psia means controlling the external temperature of the bottle to a lower temperature. Below is a tabulation of state points along the vapor pressure curve for nitrous oxide (N2O) for common ambient temperatures. You can see that small shifts in ambient temperature can greatly affect the vapor pressure of the pressurized liquid. Keeping nitrous oxide under pressure is the key to retaining its denser liquid state. As long as the tank pressure is above the vapor pressure at that fluid temperature, you will have a liquid phase in the tank. If the pressure on the fluid drops below the vapor pressure, the liquid will begin to boil away.
30 F, 440.05 psia
40 F, 506.63 psia
50 F, 580.33 psia
60 F, 661.71 psia
70 F, 751.46 psia; liquid density 48.21 lbm/ft3, vapor density 0.1145 lbm/ft3
80 F, 850.46 psia
90 F, 960.09 psia
97.6 F, 1053.3 psia; density 28.22 lbm/ft3, CRITICAL POINT
Molecular weight = 44.01 lbm/lb-mol
At first, it was thought that there wasn’t sufficient current from the lawnmower lead-acid battery we use. The summer heat can cause batteries to fail, but even after switching to a car battery, the failure to open was the same. Having a 12-volt solenoid requires greater current to actuate the solenoid valve, but it is a common standard for automotive grade parts which can be less expensive yet reliable. A current draw of 15 Amps over the long cable runs of a few hundred feet can be taxing to the firing circuit battery. This was not the cause of the problem, but it is a regular concern making sure sufficient voltage and current is available to both ignition and valve control.
To exclude outright failure of the solenoid valve, Osvaldo brought the unit home, allowed it to cool to room temperature then dry-cycled the valve from a battery to see if it still actuated. This simple test was successful and the filling valve in our nitrous oxide manifold continues to operate. At the next launch attempt, we will be prepared to chill the nitrous oxide supply bottle with an ice bath if necessary as was originally suggested at the prior launch event. Keeping the bottle pressure in an appropriate pressure range for fill operations is dependent on controlling the fluid temperature (60 to 90 F) under extreme heat or cold environments.
In researching purge solenoid valves, a second 12 VDC normally-closed valve was found and purchased. Nitrous Supply Inc., was out of purge solenoid valves but offered many alternative suppliers in the Los Angeles area. After some searching, I selected a high flow purge solenoid valve sold by Motorcycle Performance Specialties (MPS) Racing in Casselbury, Florida, for the purge solenoid valve used for venting our nitrous oxide manifold. The control panel is already equipped with the second command channel to open the vent from the blockhouse should it be necessary in launch operations. A schematic illustration is provided in this article.
mpsracing.com
The previous drain solenoid valve equipped with the nitrous manifold I bought was not deisgned for the full bottle pressure in the manifold so it quickly failed during initial checkouts. A manual valve was used in its place to carefully bleed out the remaining pressure in the line after the main bottle valve was tightly closed. This second solenoid valve will be used for draining the nitrous in the event of a launch scrub. Although the Contrails hybrid motor already has a small orifice and vent tube at the head end of the nitrous tank to provide slow release of pressure buildup, it is better to have a remote option to quickly depressurize the vehicle if the need arises.
With some re-plumbing of the nitrous oxide manifold to include the new vent solenoid, a soap-bubble leak check would be needed to prove the system before use. Given the significant overhanging weight of two solenoid valves, it may be wise to mount both valves on a separate plate structure to avoid excessive bending loads on the bottle connection. Design changes like this will be considered in preparation for the next launch event.
PYROTECHNIC OPERATOR TRAINING SESSION BY FRIENDS OF AMATEUR ROCKETRY
Mark Holthaus of the Friends of Amateur Rocketry (FAR) organization is offering an online training session for those interested in becoming licensed pyrotechnic operators in the state of California. The event requires registration on the FAR website and a fee paid to FAR ($10) to attend this two-hour introduction to the licensing and application process to be held on August 26th.
Amateur rocketry in California is controlled by the same laws governing fireworks which require licensing by a state exam. The application forms and guidelines are available through the Office of the State Fire Marshal in the state of California (CALFIRE).
This training course for pyro-op applicants is another example of FAR and the RRS partnering to help the cause of amateur rocketry. The RRS, FAR and Rocketry Organization of California (ROC) last year met to create a joint set of recommendations to help CALFIRE improve the definitions used to govern amateur rocketry when CALFIRE they were seeking input from rocketry organizations. It is to the mutual benefit of the whole rocketry community and the public that there be more licensed pyro-op’s in amateur rocketry to both increase awareness of state laws and improve the culture of safety in our hobby and professions.
This FAR training course only serves to provide applicants with basic guidance on how to begin the application process and prepare to take the examination. Members of FAR, the RRS, ROC and any other amateur or model rocketry organization are welcome to apply. Several members of the RRS have already applied as the society continues its campaign to grow our ranks of licensed pyro-op’s at all three levels.
Completion of this training course does not substitute for any part of the pyro-op application process set by CALFIRE. As each applicant is required to pay their own fees including fingerprinting, they must also provide five letters of recommendation from licensed pyro-ops at or above the level of license being sought. After this class, each applicant must formally request these letters from state licensed pyro-ops in writing. For a licensed pyro-op to offer a letter of recommendation to an applicant, they must be willing to endorse their skills, knowledge and character to the state of California based on their personal experience with that individual. This is done through active participation at launch events through rocketry organizations having licensed pyro-ops leading their operations. Apprenticing, studying and attentiveness are all ways that a pyro-op can get to know an applicant personally and thus build confidence that the applicant is ready to have the responsibility of being licensed in rocketry. A letter of recommendation is given solely at the discretion of the licensed pyro-op which means their standards and expectations may vary significantly from others. It is important to establish a working relationship with both the society and the specific pyrotechnic operator over several projects to demonstrate skills and learn best practices through active participation.
As the RRS has more licensed pyro-ops than FAR at this time, this training course will be successful if both organizations support it. Some of the RRS pyro-ops have already offered their support as this means more people will need to become active with the RRS and conduct their projects at the MTA.
ROCKET LABORATORY AT THE COMPTON AIRPORT
Keith Yoerg announced that there is a tentative plan to create a rocket laboratory in a hangar at the Compton Airport, Although, the hangar will be used from time to time to store or service light aircraft, there is a great deal of working space which will help the RRS continue their liquid rocket project already underway. Several members of the RRS are also active with civil aviation and are members of Chapter 96 of the Experimental Aircraft Association (EAA 96). The EAA has generously supported the RRS over the last two years and we hope to continue and expand this partnership.
NEXT EVENT AT THE MOJAVE TEST AREA
The RRS has been planning the next event at the Mojave Test Area which will be dedicated to repairing some of our facilities including the adjustable rail launcher damaged in solid rocket launch explosion in August 2019. The consensus at the meeting was that we should not to return to the MTA for a formal launch event until the seasonal temperatures decrease from the excruciating desert summer. October 3rd was selected for this work event, Our hope is the weather will be cooler and we can accomplish more on that day. We may also take some time to search for more rockets planted downrange from past launch events.
The RRS may also conduct a few static firings or even a launch if member projects are ready. All such proposed hot-fire and launch activities must be proposed to the RRS president and the selected pyro-op in charge for that day. Some of our member projects such as Wolfram Blume’s Gas Guzzler two-stage ramjet and my second-build of the high-powered hybrid rocket are both still works in progress and may be ready for the early October launch date. Larry Hoffing has been working on an improved solid motor chemistry which he may want to test at the MTA.
The RRS is available for private events before that time, but one must make their request to the RRS president as usual. Some have indicated interest in returning to the site for just a few hours to recover more rockets downrange. Its our policy that at least two members be present for any excursions to the MTA and the RRS president must be notified in advance.
IN CLOSING
Some topics were not able to be covered including the overview of the new RRS Constitution as it gets ready for administrative membership review. Also, facility improvement plans at the RRS MTA including new restroom facilities and blockhouse should be discussed.
The next RRS meeting will be held by teleconference on September 11, 2020 as it is unlikely we will be permitted to return to the Ken Nakaoka Community Center by then. We hope everyone continues to stay safe during these days of the pandemic and try to stay in touch as we are planning another event at the MTA for October 3, 2020.
If there are any questions, please contact the RRS secretary.