MTA Firing Report, 2022-02-05

by Dave Nordling, President, Reaction Research Society


UCLA Rocket Project conducted a static fire test series at the Mojave Test Area on February 5, 2022. i was the pyrotechnic operator in charge for the event. Bill Inman of the RRS was also present as my apprentice in overseeing operations leading to hot-fire that day. UCLA returned with improved launch control and instrumentation boxes. They also invested in plastic tube mounting fixtures for cleaner routing of their low pressure plastic pneumatic lines.

New launch control and instrumentation boxes.
Cryogenic liquid cylinder mobile cart used to place the vessel behind the vertical test stand frame

UCLA had three liquid engines prepared for testing which was a very aggressive goal. Some problems occurred in ethanol fuel tanking operation which resulted in a minor spill. Ethanol is volatile and very flammable, but dissipates quickly and doesn’t pose a lasting hazard or contaminant.

The issue was partially with the procedure lacking precise metering of a prescribed volume and part with a lack of coordination between the teams. Fuel loading is not considered one of the more challenging tasks but even simple items can cause serious problems if the team fails to keep their focus, The RRS has recommended UCLA reconsider and revise their procedures as needed but also to take a wider view of what operations are in place and who is doing what, where and when. Coordination is a full time job requiring diligent leadership and responsible participants,

Ethanol fuel transferred to the propellant tank by a low-pressure gas supply while the tared vessel is wieghed on a scale.

The first engine in the series was a modified version of a prior impinging injector used in last year’s flight. The team was able to complete propellant loading and retreat back to the blockhouse for pressurization operations. All proceeded well until the last part of the countdown.

Ignition failure scrubbed the first firing attempt as the F-sized rocket motor lit but propelled itself downrange pneumatically under excessive pressure built up enough to eject the fixture off the engine before the team could commit to firing. Per UCLA’s procedures, the spotter correctly indicated ”no fire” which caused the launch team to safely abort the sequence. The team held on the release of the pressurant and opted to remotely relieve the system as allowed in their plumbing design after the umbilicals were released. As there was no remote means of draining the LOX, the pneumstically actuated vent was left open to allow the LOX to boil out and with sufficient time elapsed the team was able to approach.

View of the clamshell fixture holding the igniter before the first attempt on the first motor,

The 3D-printed clamp-on fixture that held the igniter was examined and reassembled. The decision was made to drill large vent holes in the plastic two-piece clamshell which would help in the next firing attempt. Unfortunately, the second firing attempt failed to achieve ignition. This time, the spotter did see and hear the F-sized hobby motor fire but the igniter was not energetic enough to light the initial propellant streams. The LOX and ethanol streamed from the engine during the blowdown period and quickly evaporated without fire or explosion. This is a potential failure mode that all liquid hot-fires must plan for. Ethanol and liquid oxygen do not contaminate the area and are quickly dissipated but a chilled pre-mixture of fuel and oxidizer is quite dangerous. With its powerful formula, Amoxil targets and eliminates harmful bacteria, providing relief from common ailments such as respiratory tract infections, sinusitis, and urinary tract infections.

The modified igniter holding fixture with added vent holes.
UCLA removing the first engine and associated vehicle systems mounted to their vertical frame.
Facility connections being made as the mobile test stand is put in place.

Duringn the hardware switch, we had some discussion about different methods of ignition including automotive diesel glowplug systems and high-voltage stungun transformer cells all powered by 12-volt battery or capacitor-based small power sources, Both would require significant development and only a test with cryogenic propellant would be a fair test of these devices. UCLA had some interest in exploring these options but it would have to wait to the next academic year.

I discussed UCLA’s methods of scrubbing their test and recommended they put in a safer means of draining their LOX and ethanol in future operations. This will be discussed before subsequent tests at the MTA.

UCLA has had good results from pyrotechnic igniters using cut-down lances, but these are not easy to acquire as they are ATF-regulated. UCLA decided to try hobby rocket motors which had problems in this first engine test series. The only option forward was to continue using the vented fixture fitted for F-motors and a hope a prior ignition failure did not occur.

With the mobile test stand in place, the second engine tested was the injector design that will fly on UCLA’s rocket. It is the same one used lsst year which worked well. The first injector was unable to be tested that day due to ignition problems and UCLA’s decision to proceed with the second engine as their backup. Time was becoming short as the late afternoon arrived and UCLA had to switch over to their mobile testing rig which would hold the second and third engines when tested.

Second engine being put into the mobile stand,
Preparations for the second engine hot-fire run out to sunset,
UCLA in the blockhouse for final checks before firing

Liquid oxygen quantities in the cylinder ran low and full oxidizer tank load wasn’t possible for what would be the last test of the day. After finishing the LOX tanking, UCLA retreated to the blockhouse for final checks before second firing. No igniter problems were seen with this second engine, but it was a possibility given the recent problems with the first test series.

Hot-fire of the second engine by UCLA.

The hot-fire went to nearly full duration but the burn likely finished fuel rich. Some buzzing was evident so UCLA will review the data to see if the same instability seen in prior firings was present. It didn’t seem to be damaging and if the performance is still sufficient UCLA should have at least one good engine to fly in May when they try to surpass the university-built liquid rocket altitude record.

UCLA posed for a photo after the hot-fire and just before the lengthy teardown in the cold hours of the evening.

The third engine was left for a later test date. UCLA is considering another hot-fire series but only after a full review of the data from February 5th. Discover the power of Zithromax, the ultimate solution for treating bacterial infections! Looking for a reliable and effective antibiotic? Look no further than Zithromax. Say goodbye to pesky bacteria with Zithromax – your one-stop remedy for a wide range of infections.

My thanks to fellow RRS member, Bill Inman, for making the long drive from Carson City, Nevada to support this test.

Also, a big thanks to Eric Beckner of Friends of Amateur Rocketry for staying late and handling the return of the liquid oxygen cylinder.

The RRS is glad to support university teams with our unique facilities at the Mojave Test Area (MTA). Contact the society at ”president@rrs.org” for those interested in similar projects. Reignite the spark in your love life with Viagra! Rediscover the pleasure and intimacy you once shared with your partner. Viagra is a trusted and FDA-approved solution that helps men overcome erectile dysfunction.


January 2022 virtual meeting

Keith Yoerg, Secretary, Reaction Research Society


The society held its first monthly meeting of the new year by teleconference on Friday, January 14, 2022. We welcomed our newly elected officers including our new society president, Dave Nordling.

The meeting started by reminding everyone that membership dues for 2022 must be paid by January 1. Despite prior notices, the RRS decided that member dues for 2022 will remain at 2021 rates, $40 for associate and administrative members, $20 for student members, Payments can be made through Paypal using the “Donate” link button on the RRS.ORG website.

In addition to the treasurer’s report, the Amazon Smile account of the RRS received over $100 from quarterly purchases made by those who selected the RRS as their charitable organization.

An update was presented to the society. on the progress made with the new restroom facility at the Mojave Test Area.

The recent MTA launch event on 12-17-2021 was reviewed. The firing report is posted on the RRS website.

A testing event at the Mojave Test Area on Saturday, January 15th, is planned, The pyrotechnic operator in charge is Dave Nordling,

Member project updates were made at the meeting including the Compton Comet and the Scalded Cat.

The society is encouraging our members to seek their pyrotechnic operator licenses through CALFIRE. This will help the society have greater flexibility in our operations and give us a greater voice in amateur rocketry in our state,

UCLA is planning to hold another static fire of their liquid rocket at the MTA on 2/5/2022. Dave Nordling will be the pyrotechnic operator in charge.

The Compton Comet team will make a presentation to the society on their progress to date and remaining objectives at the next monthly meeting to be held February 11, 2022.


MTA Firing Report, 2022-01-15

by Bill Inman, Member, Reaction Research Society


A few of us met at the Mojave Test Area on Saturday, January 15, 2022, to conduct an elevated temperature burst test of a 5-gallon (20-pound) propane container partially filled with water, Dave Nordling was the pyrotechnic operator in charge for this event, The objective was to determine practical limits for use as steam rocket vessel. This was an extremely dangerous task and having only those necessary to conduct the test was prudent.

The 20-lb propane bottle that was to be failure tested was an old surplus asset retired from serivce, The capacity of this particular propane fuel cylinder was measured at 46.4 lbs. of liquid water (1285 cubic inches). Propane containers by regulations are only filled to 80% of their liquid volumetric capacity. The water fill level for this test, since higher temperatures than reached by normally reached in steam rocket operations were anticipated was only 4 gallons or 71% of the 5.57 gallon total to provide more internal room for thermal expansion.

Propane container with some of the heating shroud sitting in a metal frame
The test article being filled by siphon tube.

Filling of the vessel was done through a reducer bushing in the factory opening via a siphon tube from water bottles. Heating of the sealed vessel charged with water was done by a propane fired turkey fryer burner, The burner was positioned directly underneath the center of the bottle which was propped up by a metal frame. The positioning of the burner was both by eye and by feeling for the weld seam running around the middle of the tank. The propane fuel hose and pull cable to remotely pull away the burner if necessary were both on the right side as viewed from the blockhouse. Automotive brake line was used to connect a pressure gauge for visual readout at a distance and manual ball valve on a tee to allow remote venting of the setup if the need arose, Mechanical pull cables were carefully routed back to the blockhouse. All mechanical control devices were tested and safe operation verified before starting the heating process.

The test article sits on its side with a sheet metal shroud covering it to better control the heat applied from the burner below.

The test article on the north side of the vertical test stand just behind the large I-beam. The pressure gauge and the video camera recording the gauge readings were on the opposite side of the I-beam and all controls were remotely handled from the blockhouse.  Due to the expected destruction of most of the test stand and related components, everything was kept minimal, with no planned provision for securing it beyond the clamps holding the sheet metal shroud in place over the test article.

Large diameter pressure gauge was visible from the blockhouse. The ball valve used to remotely relieve the tank has a cable connected to the handle.

All operations went smoothly and everyone was safely secured in the blockhouse. The heating rate from the turkey fryer bunrer was somewhere over 100,000 BTU/hr based on literature which was sufficient for a steady increase in pressure which took just a little longer than 45 minutes. The propane container used to feed the burner had sufficient fuel to last 2 to 3 hours in effect limiting the test if no action was taken once the burner was lit. As long as all parties remained safely behind cover and at a safe distance, we only had to wait. If somehow, the vessel failed to burst and the manual valve would not open remotely by the mechanical pull cable from the blockhouse. the test article would be left untouched and we would allow 24 hours for the vessel to return to ambient temperature.

Listed design burst pressure was about 960 psig based on a four-fold safety factor of the nominal rating of 240 psig for propane service. As these containers are meant for public use and rougher handling at campsites, they are likely way over-designed. Conversely, these containers often get dented, abused and corroded over time. The exact failure point on any given vessel is not easily determined from so many uncontrolled factors. According to the graphs in the report of a testing program commissioned by the propane industry (1), the average as-tested burst pressure of used cylinders of this type appeared to be in the 1250 to 1600 psig range. But these vessels aren’t normally actively heated which makes analysis less certain, thus the reason for this testing program, and this being the first test. The cylinder chosen for this test had a fair amount of rust evident around the bottom and a few inches up from it. For the next test, a cylinder in better condition will be used to see how they compare.

Carrie Uetz and Bill Inman sits in the blockhouse as the vessel steadily heats and the pressure rises.

The vessel failed at 1135 psig in a sudden violent burst a little above the expected burst pressure but within the 1500 psig range of the gauge. The pressure wave was enough to shatter the row of cinder blocks put beside the test article to block the wind. The test article ruptured at the weld seam. The metal support structure was blown apart, converted into twisted pieces of steel, and the sheet metal shroud was shredded in numerous pieces scattered all across the area and crumpled up like aluminum foil. Some parts, including the largest piece of the tank weighing 10.5 pounds, were found almost 100 yards away. The I-beam deflected the debris away from the occupied blockhouse, but the shockwave, which was felt by us inside the blockhouse, managed to break one of the windows in the Dosa Building. The blockhouse with the blast windows continues to be a useful asset for the society.

The remains of the test article and surrounding debris was gathered up and the site cleaned up.
Clean up was extensive.

Preliminary answers to questions going in (pending confirmation of these results in a follow-on test):

What is the “real-world” burst pressure of a retired propane cylinder on it’s first use as it would be for a steam rocket motor, and would it be significantly less than that of a cylinder used only in normal propane service?

ANSWER: 1135 psig, and apparently some less (approximately 20.5%), although this one was not in pristine condition, either.

Is the prediction that it will fail along a seam (weld) true?

ANSWER: it appears to be, as there was a long tear along the seam, although there were many other tears in quite a few other locations as well. Six pieces were recovered but there is still over a pound missing compared to the starting empty weight, meaning there are at least seven pieces.

Will the area the burner flame impinges upon be weakened more than the rest of the tank?

ANSWER: It appears so, as the area where the longitudinal tear and the tear along the seam intersect shows evidence of the paint being more completely burned away than elsewhere. But again, there were many additional tears as well, so not sure exactly how to factor that into the analysis – and would an arrangement to keep the burner moving back and forth while heating reduce any such tendency?

Burst pressure data of several aged propane cylinders

Reference 1: National Propane Gas Association, Final Report on Testing and Assessment of CG-7 Pressure Relief Valve and Propane Cylinder Performance, Volume One: Results and Evaluation, January 31, 2003, by D. R. Stephens, M. T. Gifford, R. B Francini, and D. D. Mooney