December 2019 meeting

Dave Nordling, Secretary, Reaction Research Society


The Reaction Research Society (RRS) met for our last monthly meeting of the year on December 13, 2019, at the Ken Nakaoka Community Center in Gardena, California. We had a full house with three different universities represented and a few returning members who came out to see how this year was ending for the society. The Compton College STEM club came out and some of them joined the RRS that night. Compton College is working on their own liquid rocket build which may next year see some important testing conducted.

Compton College STEM club at the December 2019 meeting of the RRS. From left to right, Katherine Perez, Desiree Medina, Erik Aparicio, Jamie Alvarez

Frank Chandler who is the director of Cal Poly Pomona’s (CPP) liquid rocket group and an RRS member was also at the meeting to discuss a March test date at the RRS MTA. He mentioned that Cal Poly Pomona recently had a tour of the AstroPak company in Downey, California. AstroPak has been in the business of cleaning mechanical parts for oxygen service for many years. The CPP students got to see each step of the process and learned the importance of maintaining this cleanliness throughout operations. Nearly all liquid rocket projects have decided to use liquid oxygen which has it’s own challenges to meet. Studying and keeping good cleanliness practices is paramount to avoiding catastrophe.

Chris Lujan and Frank Miuccio establish the link to bring in Richard Garcia, our director of research into the meeting.

We also were happy to have our director of research, Richard Garcia, calling into the meeting. Frank Miuccio and Chris Lujan have been very helpful in establishing a call-in number for some of our former and current members to call in when they are away from the city. We hope to have more of our membership calling in so that they may remain informed and active with their membership in the society. As per our tradition, we always value those making the trip to visit us in person.

After calling the meeting to order, and the reading of the treasury report, we covered our agenda items. We covered nearly all of our agenda and had time for special presentation from two members of Long Beach Rocketry at California State University Long Beach (CSULB). The purpose of their visit was to introduce themselves to the RRS.

CSU Long Beach presenters with their latest prototype on display at the December 2019 meeting of the RRS.
Frank Chandler sits at the table next to the Long Beach Rocketry team’s next assembly on display at the December meeting of the RRS.

Corey Fraga and Dan Dao gave us a short presentation of their team and some of their recent accomplishments. Their solid motor rocket project started in 2015 and has done well in recent competitions including the NASA University Student Launch Initiative (USLI) taking fifth place among a long list of worthy competitors. They also brought their most recent prototype vehicle which has a quadricopter drone built into the cargo bay. After the rocket completes its flight and gently touches down from its parachute recovery system, the cargo bay opens from an electric motor driven mechanism which allows the drone to take off and survey the landing site. The idea is to create a system that could be useful in planetary exploration or even in remote or dangerous areas here on Earth.

CSU Long Beach (Corey Fraga, Dan Dao) makes their presentation on their latest competition at Huntsville, AL.

The Long Beach Rocketry group offered to give the RRS a tour of their lab facilities on campus. The RRS graciously accepted their invitation. We should hopefully announce a date soon for this event.

Corey Fraga and Dan Dao finish their presentation at the December meeting of the RRS.

[1] Results from the last MTA launch

The launch report from the December 7, 2019, event has already been posted. We had a successful event despite an earlier concern for bad weather. Thankfully, the rain fell early and had cleared by Saturday morning. We were able to get our equipment set up for the event, but the society needs to invest in a simple sumping pump in case we need to remove any standing water from our bunkers or other enclosed spaces that have failed to drain from a recent rain or flooding. We are thankful to our neighbors at the Friends of Amateur Rocketry (FAR) for letting us borrow their sump pump.

Two students of 99th Street Elementary wait for the next launch in the RRS MTA observation bunker. Many of our observers could use something to stand a little higher to see better.

I also noticed that we could use a few more cinder blocks in the blockhouse. Many of our students are too short to see over the wall and the few blocks we already have are not enough. The RRS should buy a few more cinder blocks and possibly make some standing benches to help our students see their hard work better from the safety of the observation bunker.

An RRS standard alpha takes off into the moist air of December at the MTA.

Another observation made was the students from the neighboring Friends of Amateur Rocketry (FAR) site were often seen walking around too close to the RRS launching site as we were conducting road and air checks for our alpha rocket launches. It appeared that they were searching to recover their rocket from their prior flight, but we aborted three different countdowns due to car movements seen, or people crossing by on the north road adjacent to our property, and even one oblivious individual who was walking downrange of our own RRS MTA launch site as we were in the count!. The RRS and FAR must better coordinate our launch and recovery protocols respecting each others’ boundaries if only for the safety of all people concerned.

FAR and the RRS often conduct events on the same day and since our societies are sharing the launch areas and have many common interests, the RRS will work with FAR to find the best approach to assure safety and smooth operations for all.

[2] Next events at the MTA

Frank Miuccio is already working on the next event with LAPD CSP. The program will likely have its first class possibly on the Friday after the Martin Luther King holiday. Five to six weeks later means that the launch event could take place in late February or early March 2020.

I’ve been planning a launch event at the RRS Mojave Test Area (MTA) much sooner than that. For too many years, the RRS MTA sits empty in January and February for no good reason. I sought to undo this trend by holding an event just with our membership the way that our society used to operate.

At first, I was able to confirm Wolfram Blume who wants to fly his booster and ramjet upper stage system, if only for a system test of his booster, staging mechanism and recovery system. The ramjet upper stage will not be fired and will be loaded with an equivalent weight of water in its gasoline fuel tank to get the correct balance of the final vehicle. It’s a bit of risk to fly the actual ramjet prototype but there is no better way to get the right aerodynamics. It should be a good test and with luck his systems all pass the first flight test at the RRS MTA.

Larry and I have been talking about integrating a commercial hybrid motor into his 38mm fiberglass rocket. If I can acquire the motor parts, Larry will help me get the recovery system and the rest of the motor mounting complete. This will be the first hybrid motor launch from the RRS MTA in a very long time.

Also, John Krell voiced his interest in re-flying his improved avionics payload in an RRS standard alpha. This one will have an expanded accelerometer range to catch the ultra-fast burn of the alpha. He’s working on improving the data rate as recent open-source software changes have downgrading the sampling by half for some inexplicable reason.

CSULB’s Long Beach Rocketry team, (left to right) Corey Fraga and Dan Dao, Frank Chandler (CPP) and John Krell at the December meeting of the RRS

Brian Johnson and Bill Behenna each have avionics packages in development. The RRS has plenty of alpha boosters ready if members can get their payloads integrated into a suitable payload tube in time. We hope to confirm the launch manifest by New Year’s Day so I am hopeful we will have a fun launch day on January 18, 2020. We have also spread the word to our university project teams that the RRS MTA will be open for testing or flights if they can be ready on this date early in the year. The RRS encourages all teams to plan ahead and test early and often to assure their later success.

[3] Progress on the 2020 RRS symposium

Frank Miuccio, our vice president and symposium coordinator, has had some difficulties in confirming the symposium date, but we are hopeful that the April 18, 2020 will be the symposium date. We also may have the option for April 25, 2020. The Ken Nakaoka Community Center of Gardena will hopefully confirm the date for our symposium Monday.

The Long Beach Rocketry group and the Compton College STEM club have both indicated their interest in presenting or exhibiting at the 2020 RRS symposium. In many cases, it can be first come, first serve. This will be the fourth symposium in a row for us and we hope to continue the momentum we’ve built. I have a few government and private companies in mind to give us a great slate of speakers. We just need to confirm the symposium date.

[4] Treasurer’s report on the membership roster, dues payment policy change

Chris Lujan has been surveying the sign-up sheets from past months over recent years to help establish who has been attending meetings and how often. Active membership requires participation in the society as it does with any group. Attending monthly meetings is not the only means of staying active as attending launch events or participating in outside events also qualifies. The RRS is working on building a firm definition to make clear when a member is or is not active. This is important as our Constitution requires both an administrative membership class AND active membership to retain voting rights. Each year, we try to reach our past and present members but without effort on the member’s part to keep their information current, our elections and voting on important measures must go on without them. Contacting any member of the RRS executive council is the best way to keep the society updated on your whereabouts and contact information.. The membership roster is managed by the RRS treasurer.

treasurer@rrs.org

Chris is also working up some percentages for how many of our active membership are current with their dues payment. Initial estimates are encouraging, but since we have many new members who paid upon their induction, these high percentages make sense. It is our longer term members who are often neglecting their duty to keep their dues paid each year. Dues payment is also an essential element of membership.

The executive council has voted a policy change to when dues are to be paid. Effective immediately, all dues payments must be made by January 1st of each calendar year. I was glad that the society has supported this firm fixed date which makes accounting for dues much easier on our treasurer. The membership roster will also track dues payment and active membership status. For the several lifetime members in the society, this past membership class will remain and dues payment is not required for these persons, however, remaining active with the society is still a requirement to keep voting rights.

[5] 2020 Constitutional Committee report

Frank Miuccio was able to report that the 2020 Constitutional Committee has met a couple of times in the last two months and is reviewing the last page of the new draft. The committee will present its draft to the executive council at year’s end. The executive council will review the draft before presenting it to our administrative membership for consideration and a subsequent two-thirds ratification vote.

[6] Social media updates

Our social media coordinators were both not in attendance in December. The RRS continues to be active on Instagram. Our Facebook page needs some management. The RRS is also looking at trying to build a calendar feature on the RRS.ORG website to better announce events.

secretary@rrs.org

The RRS continues to use WordPress for its ease of use and simplicity, but the society has been considering reformatting and restyling our page or at least re-organizing the menu options to make finding common things easier. This will be a task for the new RRS secretary.

[7] CSFM committee on amateur rocketry

The California State Fire Marshal’s (CSFM) office has been holding hearings with the broader pyrotechnic operator’s community throughout the state this year. Most of the community is made up of the fireworks and special effects community. Amateur rocketry is a smaller and separate group which has our own interests we operate very differently from the other larger groups.

The RRS (Larry Hoffing), ROC (Chris Kobel) and FAR (Mark Holthaus) discuss a collective list of proposed changes to CSFM definitions governing amateur rocketry on 12/04/2019.

Mark Holthaus of FAR has been reviewing the definitions pages of the California laws relevant to amateur rocketry. The RRS and FAR have met on three different occasions in the last two months. The RRS has found FAR’s proposed changes to be very reasonable and accurately reflect how we can continue to operate safely. We have also included feedback from members of the Rocketry Organization of California (ROC) at the last two meetings. David Reese of ROC has been particularly helpful in improving and clarifying the language which governs our hobby and we are also grateful for his assistance.

Mark has made arrangements to discuss our proposed changes with the CSFM office on Monday, December 16th. We hope this informal meeting goes well and that all of our recommendations can be implemented which will assure both safety and legal operations for our groups. Some of the amateur rocketry groups are not national organizations and would be harmed by excessive regulation from the state. The CSFM office has been very welcoming and open to ideas thus far. CSFM has not often held these kinds of reviews and the RRS recognizes the great opportunity we’ve had to help shape policy for everyone in rocketry in California.

[8] RRS executive council election results for 2020

Larry Hoffing, our appointed election chairman for this annual election cycle, certified his results to the membership at our December 2019 meeting as required per our Constitution. Each officer was elected by unanimous vote. Our new executive council officers starting in January 1, 2020 are as follows:

Osvaldo Tarditti, president@rrs.org

Frank Miuccio, vicepresident@rrs.org

Drew Cortopassi, secretary@rrs.org

Chris Lujan, treasurer@rrs.org

The RRS is grateful to our election chairman, Larry Hoffing, for fulfilling his duties to the society. The council will appoint a new chairman next November when we hold nominations for the next election cycle. The society is thankful to our new and returning officers who have stepped up to serve the society for this next exciting year, 2020.

[9] Proposed RRS MTA standard fee schedule

The RRS has become increasingly active with more and more requests to use our Mojave Test Area (MTA). This is a very good thing, but often scheduling of hot-fire events has become excessively chaotic. The RRS understands that sometimes things happen that can force cancellation of a planned event with little or no notice. Weather is often the main culprit of such things. However, as one who has participated in coordinating launch events at the MTA this year in conjunction with our RRS president, I have seen many occasions when poor planning is the only reason for a last minute cancellation. Worst yet, the society has also received far too many last minute requests for use of our site. The RRS is in the process of drafting a standard fee schedule which will explain the requirements for outside users of the MTA. The exact details of this forthcoming policy are still under discussion, but the following is some of the ideas that were discussed.

The RRS is happy to help as many organizations as we can, but our customers must understand that:

(1) We are a volunteer society. Few, if any, of us are paid for the substantial time and resources spent to make these events possible. While we often generously donate our time to support and promote these events, the society needs money to operate and improve our site and this must come from charging fees to pay for repairs improvement projects. A standard fee schedule will be drafted, reviewed and approved by the society before the end of the year.

(2) We operate the RRS MTA by APPOINTMENT ONLY! There is no sign-up calendar like what is used by other amateur rocketry organizations such as FAR. We operate in this fashion because we stress the importance of advanced planning. Last minute requests for using the MTA site will very likely be rejected. Rocketry is a dangerous hobby and the importance of careful preparation is reflected in the desire of the RRS to accept only advance notification for all proposed projects. This not only makes planning events easier for all parties, but it makes them safer. Contact the RRS president for all requests to use the RRS MTA.

(3) Our indemnification forms are required to be signed and submitted by ALL PERSONS well in advance of attending the event. This includes spectators, spouses, significant others, and children. This has been standing policy at the RRS MTA and will remain so. Just showing up at our MTA site on the day of the event is NOT acceptable and people will be turned away if our policies are not respected.

(4) We expect several weeks advance notice to conduct a thorough review of each new project. This means that all groups must have their operating procedures, checklists, drawings, schematics already prepared for the pyro-op’s review when the request is submitted.well in advance of the requested event date. Expecting the pyro-op to examine your intended test article and procedures for the project only on the day of the event upon their arrival is NOT REASONABLE.

Events at the MTA will be conducted with a pyro-op appointed by the RRS. Our pyro-op should have had the opportunity to see everything well planned and well in advance. Attending RRS monthly meetings is an excellent way for potential users to familiarize themselves with the society and our expectations. Submitting your project description on an RRS standard record form a month in advance and was formerly policy at the RRS. Everyone must understand that the pyro-op in charge can refuse any test at any time for any reason making your journey out to the MTA all for naught.

Based on an accumulation of both good and bad experiences, I will undertake a project to draft an official RRS policy on testing at the MTA for our outside customers that will take affect on January 1, 2020. I was glad to get a lot of feedback from potential customers and other members at the December meeting. To our society members, please send me your feedback soon as I will be working this policy out in the next two weeks before the executive council approves it.

The RRS will begin charging standard daily fees for use of the MTA site and charging a separate daily fee for the pyrotechnic operator in charge at this event. Pricing may vary with private companies and universities, but in all cases, fees are expected to be paid before approval of the event is given by the RRS. Cancellations within two weeks of the event will result in forfeiture of all of those fees for that event date and new fees must be paid again for a new test date. When customers stand to lose their fees if they fail to deliver on their commitments to the RRS, they will better understand the importance of managing their projects better as they must now avoid the cost of cancellations. Other groups, both amateur and professional organizations, operate successfully with these kinds of policies and the RRS will be enforcing their own policies soon.

[10] Review of the Gas Guzzler ramjet project

Wolfram Blume and his wife were kind enough to stop by the December RRS meeting bringing his booster rocket for one more inspection. I will be the pyro-op in charge of his first test flight on 1/18/2020 and I wanted a closer look at how secure and stiff his fins were. Based on my inspection, his booster looks ready for rail launch. With luck, his staging and recovery systems will function without issue. Wolfram has borrowed from prior successful designs flown at ROC events in Lucerne Valley. The RRS is glad to assist him with this ambitious project.

Wolfram Blume stands with his booster used on the Gas Guzzler project.

[11] Solid propellant making classes

The RRS was approached about restarting our composite grain propellant making classes at the RRS MTA. After some careful assessment of our equipment, resources and available personnel, the RRS is not yet ready to offer these classes again. Twenty years ago, the society held a few of these solid motor building classes which became very popular. The RRS is building back our capabilities and this will take some time.

The Friends of Amateur Rocketry (FAR) has offered similar classes at their site and for the time being, the RRS must refer interested parties to them.

[12] SuperDosa project update

The SuperDosa project was established two years ago with the intent of the RRS restarting our large solid motor building skills to progressively build larger vehicles able to not only breach the von Karman line (100 km ASL), but surpass the current amateur rocketry altitude record holder. Despite our increasing membership, we have not had much progress to date. Given my commitments to several liquid rocket projects, I am handing over my leadership duties to Drew Sherman. Drew is a founder of Leo Aerospace and also an active RRS member. His interests very much align with this project and with the combined resources of others in the society building high powered motors, we hope that Drew can continue this project to its lofty goal of bringing the title back to the Reaction Research Society.

[13] RRS MTA facility improvements

Osvaldo Tarditti, our society president, continues to lead our MTA facility improvement projects, chief among those is improving our bathroom facilities at the site. Osvaldo has drafted plans for an improved bathroom facility at our remote RRS MTA site. The RRS will be soliciting bids from local contractors soon and we hope to commence this important improvement at the MTA sometime this spring and complete by the summer. The society has nearly enough funds for this project, but we are hoping to receive a few more thousand dollars to initiate this project sooner than later.

Also on our list of improvements is a blockhouse replacement, horizontal mounting plate at our testing area to create a regular interface pattern for future users rather than continue the unregulated drilling of anchor bolts (and the hated “male” variety of these anchor bolts) into our concrete slab. RRS members, Dmitri Timohovich and Wilbur Owens have been supporting the society on this improvement as it will require heavy equipment to place and secure this trench plate at the RRS MTA.

Larry Hoffing has recognized that the society will soon need a second 40-foot container for storage. We will be acquiring some new solid propellant mixing equipment and we need to rearrange our inventory in a more organized and accessible fashion. Whether this comes in the form of a new container on our MTA site or possibly one given to us from our site tenant, Polaris Propulsion Inc., remains to be seen. The society will continue to monitor progress and set goals to complete these tasks.

IN CLOSING

This will be my last monthly report as I am stepping down as secretary of the RRS. I have enjoyed serving in this role for the last three years, but it is time for me to allow a new secretary to lend his voice to you, our readers. I will remain active with the society, but only as a member engaged in many projects around the society. The society grows as we bring new members in and the society gets new ideas. It is also important that we also get new leadership from time to time. I hope to see more of our new administrative membership step up for these executive council roles in the future. There is no better way to help the society than with service.

As my last parting comment, I would encourage ALL of our membership to write and submit articles. The RRS.ORG website is one of the best ways we educate and inform the public about the things that interest the society in rocketry. Even simple academic subjects are excellent ideas. Next year, you may see a couple articles from me, but I want to encourage all of our membership to do more than just mention ideas in conversations, but write them down, text them, email them, convey them to the RRS secretary. It is the job of the RRS secretary to be the chief editor and means of publication for our membership. Past articles are welcome as we have re-printed ones from our long past. We also heartily welcome new content. Any time is a good time to submit.

Our next meeting will be held January 10, 2020, at the Ken Nakaoka Community Center at 7:30PM. If there are questions or corrections, please notify the RRS secretary. After January 1, this will be Drew Cortopassi.

secretary@rrs.org

With gracious thanks to the society, I hope to see everyone in the new year.

Group photo taken at the end of the December 13, 2019 meeting of the RRS in Gardena.

50 Years After One Small Step for a Man

By Dave Nordling, Secretary, Reaction Research Society


It was a half century ago today that mankind landed on the Moon. This event has had an impact on both generations present to witness this landmark event and the generations born afterward, such as myself. The Apollo 11 moon landing was a daring extension of an aggressive program that was progressively built from the dawn of the space age with abundant resources, acceptance of risk and political will never seen before (and never since). The herculean task set by the late President Kennedy in 1961 of landing a man on the moon and safely returning him to Earth by the end of the decade (1970) was fulfilled on July 24, 1969.

A grainy image of the American flag planted on the moon.

It was only eight years before that time when manned spaceflight began with the humble beginnings of riding a derivative of an intercontinental ballistic missile (ICBM) into low earth orbit scraping the bounds of the upper atmosphere. The journey was fulfilled with the enormous 6,540,000 lbm tower of three stages of the Saturn V vehicle filled with kerosene, liquid hydrogen and liquid oxygen that pushed three brave men into a new sphere of influence of the Earth’s closest celestial body just three days away. New systems and new rocket motors were built from scratch and flown in less than a decade. The massive Saturn V rocket could throw an unprecedented 107,100 lbm to trans-lunar injection (TLI) orbit. No other past or operational launch vehicle has surpassed this ability to this very day.

The Saturn V leaves its pad with a thrust of over 7,500,000 lbf.

Looking back, landing a man on the lunar surface appears simple and almost certain. But to those watching from their black and white televisions across the country and to the men and women behind the launch consoles, all of the Apollo missions were truly audacious with the looming deadline, a Cold War rival busy at work to maintain their leadership in space and an ever-present risk for tragedy at every step. Lives were lost, sacrifices were made and the goal remained steadfast. Excellence was demanded from hundreds of thousands of technical professionals, suppliers, shop workers, clerks and everyday people and was delivered such that two astronauts could walk on a foreign world opening the door to our species visiting a place beyond our blue Earth.

Skipping along the lunar surface getting work done. Beyond the human experience and reflection, this was an expedition filled with experiments to extend human knowledge.

At this 50th anniversary, it is interesting to reflect on what has happened since. After six more Apollo flights with five resulting in 10 more Americans walking, even driving over the lunar surface, the program came to an end under the Nixon Administration’s budget cuts. No other nation, including our own, has returned. It is probably due to this fact alone that more and more people begin to doubt whether the moon landing was ever real.

Also, it is the opinion of this author that because the Soviet Union’s then-secret moon program failed to place a cosmonaut into lunar orbit with their massive N-1 rocket, let alone a successful landing on the lunar surface, that our country saw fit to halt the progress of Apollo and turn our back on the Moon for five decades. I can only imagine how history would be different if the any of the four Soviet launches of the N-1 from February 1969 to November of 1972 had been a success.

The first Soviet N-1 rocket sits on its pad at Baikonaur in September 1968.

https://en.wikipedia.org/wiki/N1_%28rocket%29

The first man on the moon, Neil Armstrong, has passed away just a little less than seven years ago. Buzz Aldrin and Michael Collins remain as living historical witnesses, but in time, they too will pass on. NASA has a huge discontinuity in their chronology of exploration after the Apollo and Skylab program’s success. A long period of quiet then the Shuttle followed by eight years of paying the Russians for rides to the International Space Station (ISS) from Russia is all that remains. Our unmanned program has continued with ever more impressive returns as we learned about the moon, Mars and places throughout in the solar system, but our manned space program remains at a stand-still.

The legacy of Apollo has been more of historical legend and pride than any tangible progress eclipsing this feat of human achievement. The Space Shuttle program and its nearly four decades of life brought us the historical achievement of the first American woman in space, the first African-American in space, the launch of the Hubble Space Telescope, the first visit to a Russian space station, Mir, the first Russian cosmonaut to fly on an American space vessel, and of course the multi-year construction of the ISS celebrating its third decade of operation even after the Shuttle’s retirement. There are many people who feel that the Shuttle program failed its basic promise of routine access to space and certainly to fulfill the loftier goals of men reaching beyond low Earth orbit.

Since the days of Apollo, there have been new discoveries about the Moon. Thanks to the Lunar Reconnaissance Orbiter (LRO) launched in 2009, the Apollo launch sites have been seen in higher detail.

https://www.space.com/14874-apollo-11-landing-site

The Apollo 11 landing site and the crew’s discarded equipment as seen from lunar orbit courtesy of the Lunar Reconnaissance Orbiter.

The Indian ISRO Chandrayaan-1 lunar orbiter, the Japanese Kaguya lunar orbiter and the American LRO have each found evidence of lunar lava tubes and “moon caves” in several places along the lunar surface which offers a tantalizing possibility of a ready-made shelter for future manned exploration.

An excellent new point of interest on the Moon’s surface, lunar lava tubes found by orbiting spacecraft.

https://en.wikipedia.org/wiki/Lunar_lava_tube

Further evidence of ancient lunar lava tubes as seen from orbit.

The discovery of water ice in the permanent shadow in craters at the Moon’s poles starting from the Soviet Luna 24 probe to the ISRO Chandrayaan-1 orbiter provided strong evidence of an important resource awaiting future lunar explorers. .

https://en.wikipedia.org/wiki/Lunar_water

Distribution of water ice at the Moon’s South and North poles

Most recently, on January 3 of this year, the Chinese with the Chang’e 4 have soft-landed a rover (Yutu-2) on the far side of the Moon, a first for any nation.

https://en.wikipedia.org/wiki/Chang%27e_4

Lunar tracks by the Chinese Yutu-2 rover in the soil at the von Karman crater in the South-Pole Aitken Basin region on the far side of the moon.

With the end of the Space Shuttle program in 2011, planned since the Columbia disaster of 2003, the Constellation program, later renamed the Space Launch System (SLS) was built and extended from legacy technologies with years of flight experience.
At this moment in time, NASA has redoubled its commitment to returning people to the surface of the moon in just five years from now, 2024. It is possible this goal can be realized, but there are abundant reasons to be skeptical.

Technology is no longer the perceived barrier to finding our way back to the Moon. The ability of any government or administration to muster the cohesive, sustained political will and necessary funding to build and fly the SLS program to put men back on the moon is the question that remains unanswered. More so, will we have the fortitude to recover from failures should they occur and surmount them to make a permanent colony as was envisioned for after Apollo? To date, my generation has waited in vain on the many promises from NASA to deliver something of the magnitude of Apollo.

There is no shortage of passionate, intelligent people in this world. Many share the vision of mankind becoming an interplanetary species. Our art and culture have been permanently changed from seeing the whole of our world as a small blue marble against the enormous blackness of space. The true legacy of Apollo is the inspiration that was given to this nation’s people and any nation seeking to find pride in their abilities to put their citizens in space. Regardless of what may come in the next few years with NASA, the dream is alive with the people of the Earth to be explorers. To move beyond dreams is what will extend mankind to the Moon and beyond.


Liquid Rocket Components: Pyrotechnic Valves

by Tom Mueller


Editor’s Note: This is a reprinting of the original article written by RRS member, Tom Mueller on the subject of pyrotechnic retin-a actuated valves around 1995 (?). He mentions the build of two different rockets (the XLR-50 and the Condor) and a hypergolic rocket he intended to build after this article was written. We hope to gather more photos and details about these rockets and display them in future improvements to this posting. For now, please enjoy the subject matter as the information is very relevant today to amateur builders of liquid rockets. The RRS has been very active lately in re-exploring liquid rockets. The society thought this would be a timely and interesting subject to share with our readers.

For any questions, please contact the RRS secretary, secretary@rrs.org


For an amateur rocketeer seeking to build a liquid rocket, one of the most difficult components to obtain or build are remotely operated valves. A liquid rocket will require at least one valve to start the flow of propellants to the combustion chamber. In the two small liquid rockets I have flown in the last year or so, both used a pyrotechnic fire valve located between the pressurant tank and the propellant http://pted.org/Cytotec.php tanks. The propellants were held in the tanks by burst disks (or equivalent) in the propellant run lines. When the fire valve was actuated, the sudden pressure rise in the propellant tanks blew the burst disks, allowing propellant to flow to the injector. This method of controlling the flow to the rocket allows the use of only one valve, and eliminates liquid valves.

In the case of the first rocket, the XLR-50 which flew in October 1993, elimination of the liquid valve was important because the oxidizer was liquid oxygen, and a small cryogenic compatible valve is very difficult to construct.

For the second rocket, which flew in October 1994, the small size prevented the use of liquid valves. In fact, the single pyro valve I used was barely able to fit in the 1.5 inch rocket diameter. In this article I will describe the design of the valves that were used on these two vehicles, and variations of them that have been used in other rocket applications.

FIGURE 1: XLR-50 pyro-technic “fire” valve

The valve shown in Figure 1 consisted of a stainless steel body with a 0.375 inch diameter piston. The O-rings were Viton (material) and the squib charge was contained in a Delrin plastic cap. The Delrin was used to prevent shorting of the nichrome wire, and also to provide a frangible fuse in case the squib charge proved to be a little too energetic. In practice, I’ve never had the Delrin cap fracture.

The inlet and outlet lines to the tanks were silver brazed to the valve body. The valve was tested many times at inlet pressures of up to 1000 psi without any problems, other than the O-rings would need replaced after several firings due to minor nicks from the ports. To help alleviate this problem, the edges of the ports were rounded to help prevent the O-ring from getting pinched as the piston translates. This was accomplished using a small strip of emery cloth that was secured in a loop in one end of a short length of 0.020-inch stainless steel wire. The other end of the wire was clamped in a pin vise which in turn was chucked in a hand drill. As the wire was rotated by the drill, the emery was pulled snugly into the port, where it deformed into the shape of the inlet, and rounded the sharp edge. I used WD-40 as a lubricant for this operation, allowing the emery to wear out until it would finally pull through the port. I repeated this process a few times for each port until the piston would slide through the bore without the O-rings snagging the ports.

Another requirement is to lubricate the O-rings with a little Krytox grease. This helps the piston move freely and greatly reduces the problem of nicked O-rings.

FIGURE 2: Fire valve for a micro-rocket

The pyro valve I used in the 25 lbf thrust micro-rocket that was launched in October of 1994 is shown in Figure 2. This valve was identical in operation to the XLR-50 valve, with the major difference being its integration into the vehicle body. The valve body was a 1.5 inch diameter aluminum bulkhead that separated the nitrogen pressurant tank and the oxidizer tank. Because of the very small diameter of the rocket, the clearances between ports and O-rings were minimized, just allowing the valve to fit. The fuel outlet port was located at the vehicle center, providing pressure to the fuel tank by the central stand pipe that passed axially down the oxidizer tank. The piston stop was a piece of heat-treated alloy steel that was attached to the valve body by a screw. This stop was originally made from aluminum, but was bent by the impact of the piston in initial tests of the valve. The black powder charge in the Delrin (https://openoralhealth.org/prednisone/) cap was reduced and the black powder was changed from FFFg grade to a courser FFg powder, but the problem persisted. The stop was re-made from oil hardening steel and the problem was solved. In this application, the port diameters were only 1/16 inch so only a small amount of rounding was required to prevent the O-rings from getting pinched in the ports. The valve operated with a nitrogen lock-up pressure of 1000 psi.

FIGURE 3: Fire valve for Mark Ventura’s peroxide rocket

A more challenging application of the same basic valve design was used for the fire valve of Mark Ventura’s peroxide hybrid, as shown in Figure 3. This was the first application of this valve where liquid was the fluid being controlled, rather than gas. In this case the liquid was 85% hydrogen peroxide. The second difficulty was the fact that the ports were required to be 0.20 inch in diameter in order to handle the required flow rate. The valve was somewhat simpler than the previous valves in that only a single inlet and outlet were required. The valve body was made from a piece of 1.5-inch diameter 6061 aluminum, in which a 1/2-inch piston bore was drilled. The piston was also 6061 with Viton O-rings, which are peroxide compatible. The ports were 1/4-inch NPT pipe threads tapped into the aluminum body. The excess material on the sides of the valve was milled off, so that the valve was only about 3/4 of an inch thick, and weighed only 4 ounces. Even though the piston size was 1/2 inch, the same charge volume used in the 3/8 inch valves was sufficient to actuate the piston.

In testing the valve with water at a lock-up pressure of 800 psi, I was pleased to find that even with the large ports, O-ring pinching was not a problem. One saving factor was that the larger size of the ports made it easier to round the entrances on the bore side. The valve was tested with water several times successfully before giving it to Mark for the static test of his hybrid.

The only problem that occurred during the static test of hybrid rocket was that the leads to the nichrome wire kept shorting against the valve body. Three attempts were made before the squib was finally ignited and the engine ran beautifully. I have since been able to solve this problem by soldering insulated 32-gauge copper wire to the nichrome wire leads inside the Delrin cap. In this way, I can provide long leads to the valve with reliable ignition.

My next liquid rocket is a 650 lbf design that burns LOX and propane at 500 psia. This engine uses a Condor ablative chamber obtained from a surplus yard. For this reason, I call it the Condor rocket. This rocket uses a scuba tank with 3000 psi helium for the pressurant. I decided to build a high pressure version of my valve as the helium isolation valve for this rocket. When firing this rocket, just prior to the 10 second count, this valve will be fired, pressurizing the propellant tanks to 600 psi. I assumed going in to this design that the O-rings slipping past a port simply wasn’t going to work at 3000 psi.

At these pressures, the O-ring would extrude into the port. In order to get around this problem I came up with the design shown in Figure 4.

FIGURE 4: High pressure helium valve for Condor rocket

For this valve, the O-ring groves were moved from the piston to the cylinder bore of the valve body, so the O-rings do not move relative to the ports. The piston is made from stainless steel with a smooth surface finish and generous radii on all of the corners. The clearance between the piston and the bore was kept very small to prevent extrusion of the O-rings. The valve operation is similar to the one shown in Figure 3, and the valve body is made in the same way except female AN ports were used rather than NPT ports. When the valve is fired, the piston travels from the position shown in Figure 4a to that shown in Figure 4b. During this travel, the inlet pressure on the second O-ring will cause it to “blow out” as the piston major diameter translates past the O-ring groove. The O-ring is retained around the piston, causing no obstruction or other problems. This valve has been tested at 2400 psi inlet pressure with helium and works fine. It will be tested at 3000 psi prior to the first hot fire tests of the Condor rocket next spring.

As a side note, essentially an identical valve design as the one used on the Condor and Mark’s valve is a design shown in NASA publication SP-8080, “Liquid Rocket Pressure Regulators, Relief Valves, Check Valves, Burst Disks and Explosive Valves”.

A second pyro valve is used on the Condor system as shown in Figure 5. This valve is used to vent the LOX tank in the event of a failure to open the fire valve to the engine.

FIGURE 5: Emergency vent valve for LOX tank, Condor rocket

When the propellant tanks are pressurized by the helium pyro valve, the LOX tank auto vent valve (shown in Figure 6) closes. If the engine is not fired after a reasonable amount of time, the LOX will warm up, building pressure until something gives (probably the LOX tank). The pyro valve shown in Figure 5 is used as the emergency tank vent if the engine cannot be fired. The valve body is stainless steel with a stainless tube stub welded on for connection to the LOX tank. This valve has been tested to 800 psi with helium and works fine. In this case, some ‘nicking’ of the O-rings can be tolerated because the O-rings are not required to seal after the valve is fired. The ports in the bore are still rounded, however, to prevent the O-rings from getting nicked or pinched during assembly of the valve.

Even though it is not a pyro valve, I have shown the LOX auto-vent valve in Figure 6 because this design has proven to be very useful for venting cryogenic propellant tanks without requiring a separately actuated valve or control circuit. The valve uses a Teflon slider that is kept in the vent position as shown in Figure 6a.

This allows the tank to vent to the atmosphere, keeping the propellant at its normal boiling point. When the helium system is activated, the pressurant pushes the slider closed against the vent port, sealing off the LOX tank, as shown in Figure 6b. An O-ring is used around the slider to give it a friction fit so the aspiration of the LOX tank does not “suck” the slider to the closed position. This problem happened to David Crisalli (fellow RRS member) when he scaled this design up for use on his 1000 lbf rocket system. I have used this design on the LOX tank of my XLR-50 rocket, which used a 1/4-inch diameter slider, and on the Condor LOX tank, which uses a 1/2 inch slider. In both cases the vent valve worked perfectly.

FIGURE 6: Automatic LOX tank vent valve

The main fire valve on the Condor rocket is a pair of ball valves that are chained together to a single lever so that both the fuel and oxidizer can be actuated simultaneously for smooth engine startup. For static testing of the rocket, I will use a double-acting air cylinder to actuate the valves. For flight, however, I plan to use a pin that is removed by an explosive squib to hold the valve in the closed position. When the squib is ignited, the pin is pulled by the action of the charge on a piston, allowing the valves to be pulled to the open position by a spring. This method may not be very elegant, but it is simple, light, and packages well on the vehicle. David Crisalli has successfully employed this technique on his large rocket.

That covers the extent of the pyro valves I have built or plan to build so far. In the next newsletter, I will present the design and flight of the small hypergolic propellant rocket that used the valve shown in Figure 2.